close
close

Targeted protein degradation: advances in drug discovery and clinical practice

  • Hochhaus, A. et al. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N. Engl. J. Med. 376, 917–927 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jiang, V. C. et al. Cotargeting of BTK and MALT1 overcomes resistance to BTK inhibitors in mantle cell lymphoma. J. Clin. Invest. 133, e165694 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Shaffer, A. L. 3rd et al. Overcoming acquired epigenetic resistance to BTK inhibitors. Blood Cancer Discov 2, 630–647 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kadri, S. et al. Clonal evolution underlying leukemia progression and Richter transformation in patients with ibrutinib-relapsed CLL. Blood Adv. 1, 715–727 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sun, Y. et al. Degradation of Bruton’s tyrosine kinase mutants by PROTACs for potential treatment of ibrutinib-resistant non-Hodgkin lymphomas. Leukemia 33, 2105–2110 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Buhimschi, A. D. et al. Targeting the C481S ibrutinib-resistance mutation in Bruton’s tyrosine kinase using PROTAC-Mediated Degradation. Biochemistry 57, 3564–3575 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Shorer Arbel, Y. et al. Proteolysis targeting chimeras for BTK efficiently inhibit B-cell receptor signaling and can overcome ibrutinib resistance in CLL cells. Front. Oncol. 11, 646971 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, S. et al. Proteolysis-targeting chimera (PROTAC) modification of dovitinib enhances the antiproliferative effect against FLT3-ITD-positive acute myeloid leukemia cells. J. Med. Chem. 64, 16497–16511 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhao, Q. et al. Discovery of SIAIS178 as an effective BCR-ABL degrader by recruiting Von Hippel-Lindau (VHL) E3 ubiquitin ligase. J. Med. Chem. 62, 9281–9298 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sun, N. et al. Development of a Brigatinib degrader (SIAIS117) as a potential treatment for ALK positive cancer resistance. Eur. J. Med. Chem. 193, 112190 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Liu, J. et al. TF-PROTACs enable targeted degradation of transcription factors. J. Am. Chem. Soc. 143, 8902–8910 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bond, M. J. et al. Targeted degradation of oncogenic KRAS(G12C) by VHL-recruiting PROTACs. ACS Cent. Sci. 6, 1367–1375 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Samarasinghe, K. T. G. et al. OligoTRAFTACs: a generalizable method for transcription factor degradation. RSC Chem. Biol. 3, 1144–1153 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wu, S. et al. BRD4 PROTAC degrader ARV-825 inhibits T-cell acute lymphoblastic leukemia by targeting ‘Undruggable’ Myc-pathway genes. Cancer Cell Int. 21, 230 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Xu, Y. et al. The aptamer-based RNA-PROTAC. Bioorg. Med. Chem. 86, 117299 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lai, A. C. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101–114 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kenten John, H. & Roberts Steven, F. Controlling Protein Levels in Eucaryotic Organisms. US7273920 (1999).

  • Liu, Z. et al. An overview of PROTACs: a promising drug discovery paradigm. Mol. biomed. 3, 46 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Schreiber, S. L. The rise of molecular glues. Cell 184, 3–9 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wells, J. A. & Kumru, K. Extracellular targeted protein degradation: an emerging modality for drug discovery. Nat. Rev. Drug Discov. 23, 126–140 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Paudel, R. R. et al. Targeted protein degradation via lysosomes. Biochemistry 62, 564–579 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Eldridge, A. G. & O’Brien, T. Therapeutic strategies within the ubiquitin proteasome system. Cell Death Differ 17, 4–13 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kimura, Y. & Tanaka, K. Regulatory mechanisms involved in the control of ubiquitin homeostasis. J. Biochem. 147, 793–798 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Cecchini, C., Pannilunghi, S., Tardy, S. & Scapozza, L. From conception to development: investigating PROTACs features for improved cell permeability and successful protein degradation. Front Chem 9, 672267 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Sakamoto, K. M. et al. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl Acad. Sci. USA 98, 8554–8559 (2001).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Edmondson, S. D., Yang, B. & Fallan, C. Proteolysis targeting chimeras (PROTACs) in ‘beyond rule-of-five’ chemical space: Recent progress and future challenges. Bioorg. Med. Chem. Lett. 29, 1555–1564 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bondeson, D. P. et al. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol. 11, 611–617 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Schneekloth, A. R., Pucheault, M., Tae, H. S. & Crews, C. M. Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorg. Med. Chem. Lett. 18, 5904–5908 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Li, J. et al. A platform for the rapid synthesis of molecular glues (Rapid-Glue) under miniaturized conditions for direct biological screening. Eur. J. Med. Chem. 258, 115567 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Dewey, J. A. et al. Molecular glue discovery: current and future approaches. J. Med. Chem. 66, 9278–9296 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Domostegui, A., Nieto-Barrado, L., Perez-Lopez, C. & Mayor-Ruiz, C. Chasing molecular glue degraders: screening approaches. Chem. Soc. Rev. 51, 5498–5517 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Holdgate, G. A. et al. Screening for molecular glues—challenges and opportunities. SLAS Discov. 29, 100136 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wertz, I. E. & Wang, X. From discovery to bedside: targeting the ubiquitin system. Cell Chem. Biol. 26, 156–177 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mi, D. et al. Current advances of small molecule E3 ligands for proteolysis-targeting chimeras design. Eur. J. Med. Chem. 256, 115444 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Harris, S. L. & Levine, A. J. The p53 pathway: positive and negative feedback loops. Oncogene 24, 2899–2908 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Han, X., Wei, W. & Sun, Y. PROTAC degraders with ligands recruiting MDM2 E3 ubiquitin ligase: an updated perspective. Acta Mater. Med. 1, 244–259 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tisato, V. et al. MDM2/X inhibitors under clinical evaluation: perspectives for the management of hematological malignancies and pediatric cancer. J. Hematol. Oncol. 10, 133 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Konopleva, M. et al. MDM2 inhibition: an important step forward in cancer therapy. Leukemia 34, 2858–2874 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Zhao, Q., Lan, T., Su, S. & Rao, Y. Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule. Chem. Commun. 55, 369–372 (2019).

    Article 
    CAS 

    Google Scholar 

  • Hines, J. et al. MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53. Cancer Res. 79, 251–262 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • He, S. et al. Homo-PROTAC mediated suicide of MDM2 to treat non-small cell lung cancer. Acta Pharm. Sin. B. 11, 1617–1628 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chutake, Y. et al. KT-253, a highly potent and selective heterobifunctional MDM2 degrader for the treatment of wildtype p53 tumors with superior potency and differentiated biological activity compared to small molecule inhibitors (SMI). Cancer Res. 82, 3934 (2022).

    Article 

    Google Scholar 

  • Deveraux, Q. L. & Reed, J. C. IAP family proteins–suppressors of apoptosis. Genes Dev 13, 239–252 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tamm, I. et al. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin. Cancer Res. 6, 1796–1803 (2000).

    PubMed 
    CAS 

    Google Scholar 

  • Cong, H. et al. Inhibitor of apoptosis protein (IAP) antagonists in anticancer agent discovery: current status and perspectives. J. Med. Chem. 62, 5750–5772 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, C. et al. Recent advances in IAP-based PROTACs (SNIPERs) as potential therapeutic agents. J. Enzym. Inhib. Med. Chem. 37, 1437–1453 (2022).

    Article 
    CAS 

    Google Scholar 

  • Itoh, Y., Ishikawa, M., Naito, M. & Hashimoto, Y. Protein knockdown using methyl bestatin-ligand hybrid molecules: design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J. Am. Chem. Soc. 132, 5820–5826 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Itoh, Y. et al. Development of target protein-selective degradation inducer for protein knockdown. Bioorg. Med. Chem. 19, 3229–3241 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Itoh, Y. et al. Double protein knockdown of cIAP1 and CRABP-II using a hybrid molecule consisting of ATRA and IAPs antagonist. Bioorg. Med. Chem. Lett. 22, 4453–4457 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ohoka, N. et al. In vivo knockdown of pathogenic proteins via specific and nongenetic inhibitor of apoptosis protein (IAP)-dependent protein erasers (SNIPERs). J. Biol. Chem. 292, 4556–4570 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Semenza, G. L. & Wang, G. L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12, 5447–5454 (1992).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Forsythe, J. A. et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol. 16, 4604–4613 (1996).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Semenza, G. L. Molecular mechanisms mediating metastasis of hypoxic breast cancer cells. Trends Mol. Med. 18, 534–543 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Buckley, D. L. et al. Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1alpha interaction. J. Am. Chem. Soc. 134, 4465–4468 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hon, W. C. et al. Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 417, 975–978 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Min, J. H. et al. Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in signaling. Science 296, 1886–1889 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Buckley, D. L. et al. Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1alpha. Angew. Chem. Int. Ed. Engl. 51, 11463–11467 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Galdeano, C. et al. Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von Hippel-Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J. Med. Chem. 57, 8657–8663 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Soares, P. et al. Group-based optimization of potent and cell-active inhibitors of the von Hippel-Lindau (VHL) E3 ubiquitin ligase: structure-activity relationships leading to the chemical probe (2S,4R)-1-((S)-2-(1-Cyanocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)pyrrolidine-2-carboxamide (VH298). J. Med. Chem. 61, 599–618 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bray, P. F. et al. The complex transcriptional landscape of the anucleate human platelet. BMC Genomics 14, 1 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ito, T. et al. Identification of a primary target of thalidomide teratogenicity. Science 327, 1345–1350 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Matyskiela, M. E. et al. SALL4 mediates teratogenicity as a thalidomide-dependent cereblon substrate. Nat. Chem. Biol. 14, 981–987 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kronke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Lu, G. et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 343, 305–309 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Winter, G. E. et al. DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science 348, 1376–1381 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fischer, E. S. et al. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature 512, 49–53 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Chamberlain, P. P. et al. Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat. Struct. Mol. Biol. 21, 803–809 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kim, S. A. et al. A novel cereblon modulator for targeted protein degradation. Eur. J. Med. Chem. 166, 65–74 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Takwale, A. D. et al. Design and characterization of cereblon-mediated androgen receptor proteolysis-targeting chimeras. Eur. J. Med. Chem. 208, 112769 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lepper, E. R. et al. Thalidomide metabolism and hydrolysis: mechanisms and implications. Curr. Drug Metab. 7, 677–685 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Min, J. et al. Phenyl-glutarimides: alternative cereblon binders for the design of PROTACs. Angew. Chem. Int. Ed. Engl 60, 26663–26670 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Jarusiewicz, J. A. et al. Phenyl dihydrouracil: an alternative cereblon binder for PROTAC design. ACS Med. Chem. Lett. 14, 141–145 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gadd, M. S. et al. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 13, 514–521 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Smith, B. E. et al. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Nat. Commun. 10, 131 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo, X. et al. Profiling of diverse tumor types establishes the broad utility of VHL-based ProTaCs and triages candidate ubiquitin ligases. iScience 25, 103985 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Guenette, R. G. et al. Target and tissue selectivity of PROTAC degraders. Chem. Soc. Rev. 51, 5740–5756 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, L., Riley-Gillis, B., Vijay, P. & Shen, Y. Acquired resistance to BET-PROTACs (proteolysis-targeting chimeras) caused by genomic alterations in core components of E3 ligase complexes. Mol. Cancer Ther. 18, 1302–1311 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Ohoka, N. et al. Development of small molecule chimeras that recruit AhR E3 ligase to target proteins. ACS Chem. Biol. 14, 2822–2832 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Henning, N. J. et al. Discovery of a covalent FEM1B recruiter for targeted protein degradation applications. J. Am. Chem. Soc. 144, 701–708 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pei, J. et al. Piperlongumine conjugates induce targeted protein degradation. Cell Chem. Biol. 30, 203–213.e217 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Du, G. et al. Exploring the target scope of KEAP1 E3 ligase-based PROTACs. Cell Chem. Biol. 29, 1470–1481.e1431 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wei, J. et al. Harnessing the E3 ligase KEAP1 for targeted protein degradation. J. Am. Chem. Soc. 143, 15073–15083 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lu, M. et al. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway. Eur. J. Med. Chem. 146, 251–259 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tong, B. et al. Bardoxolone conjugation enables targeted protein degradation of BRD4. Sci. Rep. 10, 15543 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ward, C. C. et al. Covalent ligand screening uncovers a RNF4 E3 ligase recruiter for targeted protein degradation applications. ACS Chem. Biol. 14, 2430–2440 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Spradlin, J. N. et al. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nat. Chem. Biol. 15, 747–755 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Luo, M. et al. Chemoproteomics-enabled discovery of covalent RNF114-based degraders that mimic natural product function. Cell Chem. Biol. 28, 559–566.e515 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Tong, B. et al. A nimbolide-based kinase degrader preferentially degrades oncogenic BCR-ABL. ACS Chem. Biol. 15, 1788–1794 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nalawansha, D. A., Li, K., Hines, J. & Crews, C. M. Hijacking methyl reader proteins for nuclear-specific protein degradation. J. Am. Chem. Soc. 144, 5594–5605 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Tao, Y. et al. Targeted protein degradation by electrophilic PROTACs that stereoselectively and site-specifically engage DCAF1. J. Am. Chem. Soc. 144, 18688–18699 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhang, X. et al. DCAF11 supports targeted protein degradation by electrophilic proteolysis-targeting chimeras. J. Am. Chem. Soc. 143, 5141–5149 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zoppi, V. et al. Iterative design and optimization of initially inactive proteolysis targeting chimeras (PROTACs) identify VZ185 as a potent, fast, and selective von Hippel-Lindau (VHL) based dual degrader probe of BRD9 and BRD7. J. Med. Chem. 62, 699–726 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Li, L. et al. In vivo target protein degradation induced by PROTACs based on E3 ligase DCAF15. Signal Transduct. Target Ther 5, 129 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pu, C. et al. Selective degradation of PARP2 by PROTACs via recruiting DCAF16 for triple-negative breast cancer. Eur. J. Med. Chem. 236, 114321 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, X. et al. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nat. Chem. Biol. 15, 737–746 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Farrell, B. M., Gerth, F., Yang, C. R. & Yeh, J. T. A synthetic KLHL20 ligand to validate CUL3(KLHL20) as a potent E3 ligase for targeted protein degradation. Genes Dev 36, 1031–1042 (2022).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cyrus, K. et al. Jostling for position: optimizing linker location in the design of estrogen receptor-targeting PROTACs. ChemMedChem 5, 979–985 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Maniaci, C. et al. Homo-PROTACs: bivalent small-molecule dimerizers of the VHL E3 ubiquitin ligase to induce self-degradation. Nat. Commun. 8, 830 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cyrus, K. et al. Impact of linker length on the activity of PROTACs. Mol. Biosyst. 7, 359–364 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Donoghue, C. et al. Optimal linker length for small molecule PROTACs that selectively target p38alpha and p38beta for degradation. Eur. J. Med. Chem. 201, 112451 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tokarski, R. J. 2nd et al. Bifunctional degraders of cyclin dependent kinase 9 (CDK9): Probing the relationship between linker length, properties, and selective protein degradation. Eur. J. Med. Chem. 254, 115342 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Atilaw, Y. et al. Solution conformations shed light on PROTAC cell permeability. ACS Med. Chem. Lett. 12, 107–114 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • David, L., Wenlock, M., Barton, P. & Ritzen, A. Prediction of chameleonic efficiency. ChemMedChem 16, 2669–2685 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Poongavanam, V. et al. Linker-dependent folding rationalizes PROTAC cell permeability. J. Med. Chem. 65, 13029–13040 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Han, X. et al. Discovery of ARD-69 as a highly potent proteolysis targeting chimera (PROTAC) degrader of androgen receptor (AR) for the treatment of prostate cancer. J. Med. Chem. 62, 941–964 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Testa, A. et al. Structure-based design of a macrocyclic PROTAC. Angew. Chem. Int. Ed. Engl. 59, 1727–1734 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Brown, E. J. et al. A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature 369, 756–758 (1994).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sabatini, D. M. et al. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell 78, 35–43 (1994).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Liu, J. et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 66, 807–815 (1991).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sabers, C. J. et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J. Biol. Chem. 270, 815–822 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gandhi, A. K. et al. Immunomodulatory agents lenalidomide and pomalidomide co-stimulate T cells by inducing degradation of T cell repressors Ikaros and Aiolos via modulation of the E3 ubiquitin ligase complex CRL4(CRBN.). Br. J. Haematol. 164, 811–821 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Krönke, J. et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523, 183–188 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kortum, K. M. et al. Cereblon binding molecules in multiple myeloma. Blood Rev 29, 329–334 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Schreiber, S. L. Immunophilin-sensitive protein phosphatase action in cell signaling pathways. Cell 70, 365–368 (1992).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Stan, R. et al. Interaction between FKBP12-rapamycin and TOR involves a conserved serine residue. J. Biol. Chem. 269, 32027–32030 (1994).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chiu, M. I., Katz, H. & Berlin, V. RAPT1, a mammalian homolog of yeast Tor, interacts with the FKBP12/rapamycin complex. Proc. Natl Acad. Sci. USA 91, 12574–12578 (1994).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lorenz, M. C. & Heitman, J. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin. J. Biol. Chem. 270, 27531–27537 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Heitman, J., Movva, N. R. & Hall, M. N. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905–909 (1991).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Shannon, E. J., Miranda, R. O., Morales, M. J. & Hastings, R. C. Inhibition of de novo IgM antibody synthesis by thalidomide as a relevant mechanism of action in leprosy. Scand. J. Immunol. 13, 553–562 (1981).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Dredge, K. et al. Protective antitumor immunity induced by a costimulatory thalidomide analog in conjunction with whole tumor cell vaccination is mediated by increased Th1-type immunity. J. Immunol. 168, 4914–4919 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gupta, D. et al. Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 15, 1950–1961 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Dredge, K. et al. Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br. J. Cancer 87, 1166–1172 (2002).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Singhal, S. et al. Antitumor activity of thalidomide in refractory multiple myeloma. N. Engl. J. Med. 341, 1565–1571 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Rajkumar, S. V. et al. Combination therapy with lenalidomide plus dexamethasone (Rev/Dex) for newly diagnosed myeloma. Blood 106, 4050–4053 (2005).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Raza, A. et al. Thalidomide produces transfusion independence in long-standing refractory anemias of patients with myelodysplastic syndromes. Blood 98, 958–965 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chanan-Khan, A. et al. Clinical efficacy of lenalidomide in patients with relapsed or refractory chronic lymphocytic leukemia: results of a phase II study. J. Clin. Oncol. 24, 5343–5349 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zucca, E. et al. Short regimen of rituximab plus lenalidomide in follicular lymphoma patients in need of first-line therapy. Blood 134, 353–362 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Han, T. et al. Anticancer sulfonamides target splicing by inducing RBM39 degradation via recruitment to DCAF15. Science 356, eaal3755 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Bewersdorf, J. P. et al. E7820, an anti-cancer sulfonamide, degrades RBM39 in patients with splicing factor mutant myeloid malignancies: a phase II clinical trial. Leukemia 37, 2512–2516 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Slabicki, M. et al. Small-molecule-induced polymerization triggers degradation of BCL6. Nature. 588, 164–168 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Słabicki, M. et al. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 585, 293–297 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Isobe, Y. et al. Manumycin polyketides act as molecular glues between UBR7 and P53. Nat. Chem. Biol. 16, 1189–1198 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Settembre, C. & Ballabio, A. Lysosome: regulator of lipid degradation pathways. Trends Cell Biol 24, 743–750 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Banik, S. M. et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature 584, 291–297 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhao, L. et al. Targeted protein degradation: mechanisms, strategies and application. Signal Transduct. Target. Ther. 7, 113 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pei, J. et al. Targeting lysosomal degradation pathways: new strategies and techniques for drug discovery. J. Med. Chem. 64, 3493–3507 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bonam, S. R., Wang, F. & Muller, S. Lysosomes as a therapeutic target. Nat. Rev. Drug Discov. 18, 923–948 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kolter, T. & Sandhoff, K. Recent advances in the biochemistry of sphingolipidoses. Brain Pathol 8, 79–100 (1998).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mindell, J. A. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 74, 69–86 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Forgac, M. Structure and properties of the vacuolar (H+)-ATPases. J. Biol. Chem. 274, 12951–12954 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Nishi, T. & Forgac, M. The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nat. Rev. Mol. Cell Biol. 3, 94–103 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ciechanover, A. Intracellular protein degradation: from a vague idea thru the lysosome and the ubiquitin–proteasome system and onto human diseases and drug targeting. Cell Death Differ 12, 1178–1190 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Dikic, I. Proteasomal and autophagic degradation systems. Annu. Rev. Biochem. 86, 193–224 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wolf, D. H. Ubiquitin-proteasome system: from lysosome to proteasome: the power of yeast in the dissection of proteinase function in cellular regulation and waste disposal. Cell. Mol. Life Sci. 61, 1601–1614 (2004).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Eskelinen, E.-L. & Saftig, P. Autophagy: a lysosomal degradation pathway with a central role in health and disease. BBA 1793, 664–673 (2009).

    PubMed 
    CAS 

    Google Scholar 

  • Yim, W. W.-Y. & Mizushima, N. Lysosome biology in autophagy. Cell Discov 6, 6 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Mizushima, N. & Levine, B. Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12, 823–830 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Akwa, Y. et al. Stimulation of synaptic activity promotes TFEB-mediated clearance of pathological MAPT/Tau in cellular and mouse models of tauopathies. Autophagy 19, 660–677 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tang, T. et al. Aloperine targets lysosomes to inhibit late autophagy and induces cell death through apoptosis and paraptosis in glioblastoma. Mol. Biomed. 4, 42 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Feng, Y., He, D., Yao, Z. & Klionsky, D. J. The machinery of macroautophagy. Cell Res 24, 24–41 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mehrpour, M., Esclatine, A., Beau, I. & Codogno, P. Overview of macroautophagy regulation in mammalian cells. Cell Res 20, 748–762 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Klionsky, D. J. & Schulman, B. A. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat. Struct. Mol. Biol. 21, 336–345 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Klionsky, D. J. & Codogno, P. The mechanism and physiological function of macroautophagy. J. Innate Immun. 5, 427–433 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Tanida, I. Autophagosome formation and molecular mechanism of autophagy. Antioxid. redox Signal. 14, 2201–2214 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10, 458–467 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107–132 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lamark, T. & Johansen, T. Mechanisms of selective autophagy. Annu. Rev. Cell Dev. Biol. 37, 143–169 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Cheong, H., Nair, U., Geng, J. & Klionsky, D. J. The Atg1 kinase complex is involved in the regulation of protein recruitment to initiate sequestering vesicle formation for nonspecific autophagy in Saccharomyces cerevisiae. Mol. Biol. Cell. 19, 668–681 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nishimura, T. et al. Autophagosome formation is initiated at phosphatidylinositol synthase‐enriched ER subdomains. EMBO J 36, 1719–1735 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Judith, D. et al. ATG9A shapes the forming autophagosome through Arfaptin 2 and phosphatidylinositol 4-kinase IIIβ. J. Cell Biol. 218, 1634–1652 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nishimura, T. & Tooze, S. A. Emerging roles of ATG proteins and membrane lipids in autophagosome formation. Cell Discov 6, 32 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zheng, J.-X. et al. Architecture of the ATG2B-WDR45 complex and an aromatic Y/HF motif crucial for complex formation. Autophagy 13, 1870–1883 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gubas, A. & Dikic, I. A guide to the regulation of selective autophagy receptors. FEBS J 289, 75–89 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Alemu, E. A. et al. ATG8 family proteins act as scaffolds for assembly of the ULK complex: sequence requirements for LC3-interacting region (LIR) motifs. J. Biol. Chem. 287, 39275–39290 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wurzer, B. et al. Oligomerization of p62 allows for selection of ubiquitinated cargo and isolation membrane during selective autophagy. Elife 4, e08941 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shpilka, T., Weidberg, H., Pietrokovski, S. & Elazar, Z. Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol 12, 1–11 (2011).

    Article 

    Google Scholar 

  • Lamark, T. & Johansen, T. Aggrephagy: selective disposal of protein aggregates by macroautophagy. Int. J. Cell Biol 2012, 736905 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Korac, J. et al. Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J. Cell Sci. 126, 580–592 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Heo, J.-M. & Rutter, J. Ubiquitin-dependent mitochondrial protein degradation. Int. J. Biochem. Cell Biol. 43, 1422–1426 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Padman, B. S. et al. LC3/GABARAPs drive ubiquitin-independent recruitment of Optineurin and NDP52 to amplify mitophagy. Nat. Commun. 10, 408 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Koerver, L. et al. The ubiquitin‐conjugating enzyme UBE 2 QL 1 coordinates lysophagy in response to endolysosomal damage. EMBO Rep 20, e48014 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Dunn, J. & William, A. et al. Pexophagy: the selective autophagy of peroxisomes. Autophagy 1, 75–83 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sakai, Y., Oku, M., van der Klei, I. J. & Kiel, J. A. Pexophagy: autophagic degradation of peroxisomes. Biochim. Biophys. Acta Gene Regul. Mech. 1763, 1767–1775 (2006).

    CAS 

    Google Scholar 

  • Bauckman, K. A., Owusu-Boaitey, N. & Mysorekar, I. U. Selective autophagy: xenophagy. Methods 75, 120–127 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hübner, C. A. & Dikic, I. ER-phagy and human diseases. Cell Death Differ 27, 833–842 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Hill, M. A., Sykes, A. M. & Mellick, G. D. ER-phagy in neurodegeneration. J. Neurosci. Res. 101, 1611–1623 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bernales, S., Schuck, S. & Walter, P. ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 3, 285–287 (2007).

    Article 
    PubMed 

    Google Scholar 

  • An, H. et al. TEX264 is an endoplasmic reticulum-resident ATG8-interacting protein critical for ER remodeling during nutrient stress. Mol. Cell. 74, 891–908.e810 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Dice, J. F. Chaperone-mediated autophagy. Autophagy 3, 295–299 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Eskelinen, E. L. et al. Unifying nomenclature for the isoforms of the lysosomal membrane protein LAMP-2. Traffic 6, 1058–1061 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Cai, Z. et al. Chaperone-mediated autophagy: roles in neuroprotection. Neurosci. Bull. 31, 452–458 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bejarano, E. & Cuervo, A. M. Chaperone-mediated autophagy. Proc. Am. Thorac. Soc. 7, 29–39 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quintavalle, C. et al. Phosphorylation-regulated degradation of the tumor-suppressor form of PED by chaperone-mediated autophagy in lung cancer cells. J. Cell. Physiol. 229, 1359–1368 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Dice, J. F. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem. Sci. 15, 305–309 (1990).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Baindur-Hudson, S., Edkins, A. L. & Blatch, G. L. Hsp70/Hsp90 organising protein (hop): beyond interactions with chaperones and prion proteins. Subcell. Biochem. 78, 69–90 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Briknarová, K. et al. Structural analysis of BAG1 cochaperone and its interactions with Hsc70 heat shock protein. Nat. Struct. Biol. 8, 349–352 (2001).

    Article 
    PubMed 

    Google Scholar 

  • Cuervo, A. M. & Dice, J. F. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273, 501–503 (1996).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Cuervo, A. & Dice, J. Unique properties of lamp2a compared to other lamp2 isoforms. J. Cell Sci. 113, 4441–4450 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bandyopadhyay, U., Kaushik, S., Varticovski, L. & Cuervo, A. M. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol. Cell. Biol. 28, 5747–5763 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fernández-Fernández, M. R. et al. Hsp70—a master regulator in protein degradation. FEBS Lett 591, 2648–2660 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Yuan, Z., Wang, S., Tan, X. & Wang, D. New insights into the mechanisms of chaperon-mediated autophagy and implications for kidney diseases. Cells 11, 406 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Koga, H. & Cuervo, A. M. Chaperone-mediated autophagy dysfunction in the pathogenesis of neurodegeneration. Neurobiol. Dis. 43, 29–37 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Banushi, B. et al. Endocytosis in cancer and cancer therapy. Nat. Rev. Cancer 23, 450–473 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Miaczynska, M. & Stenmark, H. Mechanisms and functions of endocytosis. J. Cell Biol. 180, 7 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Di Fiore, P. P. & von Zastrow, M. Endocytosis, signaling, and beyond. Cold Spring Harb. Perspect. Biol. 6, a016865 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Allen, L.-A. H. & Aderem, A. Mechanisms of phagocytosis. Curr. Opin. Immunol. 8, 36–40 (1996).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Strømhaug, P. E., Berg, T. O., Gjøen, T. & Seglen, P. O. Differences between fluid-phase endocytosis (pinocytosis) and receptor-mediated endocytosis in isolated rat hepatocytes. Eur. J. Cell Biol. 73, 28–39 (1997).

    PubMed 

    Google Scholar 

  • Smythe, E. & Warren, G. The mechanism of receptor-mediated endocytosis. EJB Rev. 202, 265–275 (1991).

    Google Scholar 

  • Pelkmans, L. & Helenius, A. Endocytosis via caveolae. Traffic 3, 311–320 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Renard, H.-F. & Boucrot, E. Unconventional endocytic mechanisms. Curr. Opin. Cell Biol. 71, 120–129 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ferreira, A. P. & Boucrot, E. Mechanisms of carrier formation during clathrin-independent endocytosis. Trends Cell Biol. 28, 188–200 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Pacheco, P., White, D. & Sulchek, T. Effects of microparticle size and Fc density on macrophage phagocytosis. PLoS ONE 8, e60989 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hoppe, A. D. & Swanson, J. A. Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis. Mol. Biol. Cell. 15, 3509–3519 (2004).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gold, E. S. et al. Dynamin 2 is required for phagocytosis in macrophages. J. Exp. Med. 190, 1849–1856 (1999).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Garcia-Garcia, E. & Rosales, C. Signal transduction during Fc receptor-mediated phagocytosis. J. Leukoc. Biol. 72, 1092–1108 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Frank, M. M. & Fries, L. F. The role of complement in inflammation and phagocytosis. Immunol. Today 12, 322–326 (1991).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Torres-Gomez, A., Cabañas, C. & Lafuente, E. M. Phagocytic integrins: activation and signaling. Front. Immunol. 11, 738 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Elomaa, O. et al. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell 80, 603–609 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bowdish, D. M. & Gordon, S. Conserved domains of the class A scavenger receptors: evolution and function. Immunol. Rev. 227, 19–31 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • West, M. A. et al. Enhanced dendritic cell antigen capture via toll-like receptor-induced actin remodeling. Science 305, 1153–1157 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Underhill, D. M. & Goodridge, H. S. Information processing during phagocytosis. Nat. Rev. Immunol. 12, 492–502 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bar-Sagi, D. & Feramisco, J. R. Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science 233, 1061–1068 (1986).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lim, J. P. & Gleeson, P. A. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol. Cell Biol. 89, 836–843 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kruth, H. S. Receptor-independent fluid-phase pinocytosis mechanisms for induction of foam cell formation with native low-density lipoprotein particles. Curr. Opin. Lipidol. 22, 386–393 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lou, J., Low-Nam, S. T., Kerkvliet, J. G. & Hoppe, A. D. Delivery of CSF-1R to the lumen of macropinosomes promotes its destruction in macrophages. J. Cell Sci. 127, 5228–5239 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakase, I., Kobayashi, N. B., Takatani-Nakase, T. & Yoshida, T. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci. Rep. 5, 10300 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Xiao, F. et al. Macropinocytosis: mechanism and targeted therapy in cancers. Am. J. Cancer Res. 11, 14 (2021).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yoshida, S., Hoppe, A. D., Araki, N. & Swanson, J. A. Sequential signaling in plasma-membrane domains during macropinosome formation in macrophages. J. Cell Sci. 122, 3250–3261 (2009).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Liberali, P. et al. The closure of Pak1‐dependent macropinosomes requires the phosphorylation of CtBP1/BARS. EMBO J. 27, 970–981 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kerr, M. C. et al. Visualisation of macropinosome maturation by the recruitment of sorting nexins. J. Cell Sci. 119, 3967–3980 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kaksonen, M. & Roux, A. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19, 313–326 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mettlen, M. et al. Regulation of clathrin-mediated endocytosis. Annu. Rev. Biochem. 87, 871–896 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Huang, F., Khvorova, A., Marshall, W. & Sorkin, A. Analysis of clathrin-mediated endocytosis of epidermal growth factor receptor by RNA interference. J. Biol. Chem. 279, 16657–16661 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sun, Y., Martin, A. C. & Drubin, D. G. Endocytic internalization in budding yeast requires coordinated actin nucleation and myosin motor activity. Dev. Cell. 11, 33–46 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Daumke, O., Roux, A. & Haucke, V. BAR domain scaffolds in dynamin-mediated membrane fission. Cell 156, 882–892 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Cremona, O. et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99, 179–188 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lisanti, M. P., Tang, Z. & Sargiacomo, M. Caveolin forms a hetero-oligomeric protein complex that interacts with an apical GPI-linked protein: implications for the biogenesis of caveolae. J. Cell Biol. 123, 595–604 (1993).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Torrino, S. et al. EHD2 is a mechanotransducer connecting caveolae dynamics with gene transcription. J. Cell Biol. 217, 4092–4105 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Parton, R. G. & Richards, A. A. Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4, 724–738 (2003).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Duncan, M. J., Shin, J. S. & Abraham, S. N. Microbial entry through caveolae: variations on a theme. Cell. Microbiol. 4, 783–791 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lundmark, R. et al. The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr. Biol. 18, 1802–1808 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kumari, S. & Mayor, S. ARF1 is directly involved in dynamin-independent endocytosis. Nat. Cell Biol. 10, 30–41 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kalia, M. et al. Arf6-independent GPI-anchored protein-enriched early endosomal compartments fuse with sorting endosomes via a Rab5/phosphatidylinositol-3′-kinase–dependent machinery. Mol. Biol. Cell. 17, 3689–3704 (2006).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Thottacherry, J. J., Sathe, M., Prabhakara, C. & Mayor, S. Spoiled for choice: diverse endocytic pathways function at the cell surface. Annu. Rev. Cell Dev. Biol. 35, 55–84 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Casamento, A. & Boucrot, E. Molecular mechanism of fast endophilin-mediated endocytosis. Biochem. J. 477, 2327–2345 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Boucrot, E. et al. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 517, 460–465 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chan Wah Hak, L. et al. FBP17 and CIP4 recruit SHIP2 and lamellipodin to prime the plasma membrane for fast endophilin-mediated endocytosis. Nat. Cell Biol. 20, 1023–1031 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Takahashi, D. et al. AUTACs: cargo-specific degraders using selective autophagy. Mol. Cell. 76, 797–810.e710 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Takahashi, D. & Arimoto, H. Targeting selective autophagy by AUTAC degraders. Autophagy 16, 765–766 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pei, J. et al. Developing potent LC3-targeting AUTAC tools for protein degradation with selective autophagy. Chem. Commun. 57, 13194–13197 (2021).

    Article 
    CAS 

    Google Scholar 

  • Ito, C. et al. Endogenous nitrated nucleotide is a key mediator of autophagy and innate defense against bacteria. Mol. Cell. 52, 794–804 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Takahashi, D. et al. Second-generation AUTACs for targeted autophagic degradation. J. Med. Chem. 66, 12342–12372 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ahn, G. et al. Elucidating the cellular determinants of targeted membrane protein degradation by lysosome-targeting chimeras. Science 382, eadf6249 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bao, J. et al. Discovery of novel PDEδ autophagic degraders: a case study of autophagy-tethering compound (ATTEC). ACS Med. Chem. Lett. 15, 29–35 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Li, Z. et al. Allele-selective lowering of mutant HTT protein by HTT-LC3 linker compounds. Nature 575, 203–209 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Fu, Y. et al. Degradation of lipid droplets by chimeric autophagy-tethering compounds. Cell Res 31, 965–979 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kaushik, S. & Cuervo, A. M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 19, 365–381 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bourdenx, M., Gavathiotis, E. & Cuervo, A. M. Chaperone-mediated autophagy: a gatekeeper of neuronal proteostasis. Autophagy 17, 2040–2042 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Fan, X. et al. Rapid and reversible knockdown of endogenous proteins by peptide-directed lysosomal degradation. Nat. Neurosci. 17, 471–480 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhang, T. et al. Targeted protein degradation in mammalian cells: a promising avenue toward future. Comput Struct. Biotechnol. J. 20, 5477–5489 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Winandy, S., Wu, P. & Georgopoulos, K. A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 83, 289–299 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Haslett, P. A., Corral, L. G., Albert, M. & Kaplan, G. Thalidomide costimulates primary human T lymphocytes, preferentially inducing proliferation, cytokine production, and cytotoxic responses in the CD8+ subset. J. Exp. Med. 187, 1885–1892 (1998).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Corral, L. G. et al. Differential cytokine modulation and T cell activation by two distinct classes of thalidomide analogues that are potent inhibitors of TNF-alpha. J. Immunol. 163, 380–386 (1999).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Davies, F. E. et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. Blood 98, 210–216 (2001).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hayashi, T. et al. Molecular mechanisms whereby immunomodulatory drugs activate natural killer cells: clinical application. Br. J. Haematol. 128, 192–203 (2005).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Rajkumar, S. V. et al. Multicenter, randomized, double-blind, placebo-controlled study of thalidomide plus dexamethasone compared with dexamethasone as initial therapy for newly diagnosed multiple myeloma. J. Clin. Oncol. 26, 2171–2177 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Matyskiela, M. E. et al. A cereblon modulator (CC-220) with improved degradation of Ikaros and Aiolos. J. Med. Chem. 61, 535–542 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Merrill, J. T. et al. Phase 2 trial of iberdomide in systemic lupus erythematosus. N. Engl. J. Med. 386, 1034–1045 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Amatangelo, M. et al. Iberdomide (CC-220) has synergistic anti tumor and immunostimulatory activity against multiple myeloma in combination with both bortezomib and dexamethasone, or in combination with daratumumab in vitro. Blood 132, 1935–1935 (2018).

    Article 

    Google Scholar 

  • Lonial, S. et al. First clinical (phase 1b/2a) study of iberdomide (CC-220; IBER), a CELMoD, in combination with dexamethasone (DEX) in patients (pts) with relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 37, 8006–8006 (2019).

    Article 

    Google Scholar 

  • Bjorklund, C. C. et al. Iberdomide (CC-220) is a potent cereblon E3 ligase modulator with antitumor and immunostimulatory activities in lenalidomide- and pomalidomide-resistant multiple myeloma cells with dysregulated CRBN. Leukemia 34, 1197–1201 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Thieblemont, C. et al. Iberdomide (CC-220) monotherapy or in combination with an anti-CD20 monoclonal antibody as effective therapy in patients with relapsed/refractory lymphoma: early results from a phase 1/2 study. Blood 140, 569–572 (2022).

    Article 

    Google Scholar 

  • Lonial, S. et al. Iberdomide plus dexamethasone in heavily pretreated late-line relapsed or refractory multiple myeloma (CC-220-MM-001): a multicentre, multicohort, open-label, phase 1/2 trial. Lancet Haematol 9, e822–e832 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Biran, N. et al. A phase I/II study of carfilzomib, iberdomide (CC-220), and dexamethasone (KID) in patients with newly diagnosed transplant-eligible multiple myeloma. J. Clin. Oncol. 41, e20043–e20043 (2023).

    Article 

    Google Scholar 

  • Hansen, J. D. et al. Discovery of CRBN E3 ligase modulator CC-92480 for the treatment of relapsed and refractory multiple myeloma. J. Med. Chem. 63, 6648–6676 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bjorklund, C. C. et al. Pre-clinical and clinical immunomodulatory effects of pomalidomide or CC-92480 in combination with bortezomib in multiple myeloma. Blood 138, 1613–1613 (2021).

    Article 

    Google Scholar 

  • Richardson, P. G. et al. Mezigdomide plus dexamethasone in relapsed and refractory multiple myeloma. N. Engl. J. Med. 389, 1009–1022 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Richardson, P. G. et al. CC-92480, a potent, novel cereblon E3 ligase modulator (CELMoD) agent, in combination with dexamethasone (DEX) and bortezomib (BORT) in patients (pts) with relapsed/refractory multiple myeloma (RRMM): preliminary results from the phase 1/2 study CC-92480-MM-002. Blood 138, 2731 (2021).

    Article 

    Google Scholar 

  • Wu, W. et al. Overcoming IMiD resistance in T-cell lymphomas through potent degradation of ZFP91 and IKZF1. Blood 139, 2024–2037 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Perino, S. et al. CFT7455: a novel, IKZF1/3 degrader that demonstrates potent regression in a spectrum of NHL xenograft models. Hematol. Oncol. 39, 37–38 (2021).

    Article 

    Google Scholar 

  • Lonial, S. et al. Abstract CT186: Pharmacokinetic (PK) profile of a novel IKZF1/3 degrad er, CFT7455, enables significant potency advantage over other IKZF1/3 degraders in models of multiple myeloma (MM) and the results of the in itial treatment cohort from a first-in-human (FIH) phase 1/2 study of CFT7455 in MM. Cancer Res. 82, CT186–CT186 (2022).

    Article 

    Google Scholar 

  • Totman, J. A. et al. Abstract P39: CFT7455, a novel IKZF1/3 degrader enhances the anti-myeloma activity of monoclonal and bispecific antibodies by augmenting immune responses. Blood Cancer Discov. 5, P39–P39 (2024).

    Article 

    Google Scholar 

  • Liang, R. et al. ICP-490 is a highly potent and selective IKZF1/3 degrader with robust anti-tumor activities against multiple myeloma and non-Hodgkin’s lymphoma. Cancer Res. 83, 3427–3427 (2023).

    Article 

    Google Scholar 

  • Mithraprabhu, S., Khong, T., Jones, S. S. & Spencer, A. Histone deacetylase (HDAC) inhibitors as single agents induce multiple myeloma cell death principally through the inhibition of class I HDAC. Br. J. Haematol. 162, 559–562 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Santo, L. et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 119, 2579–2589 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nawrocki, S. T. et al. Aggresome disruption: a novel strategy to enhance bortezomib-induced apoptosis in pancreatic cancer cells. Cancer Res 66, 3773–3781 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ru, J. et al. Technologies of targeting histone deacetylase in drug discovery: current progress and emerging prospects. Eur. J. Med. Chem. 261, 115800 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yang, K. et al. Development of the first small molecule histone deacetylase 6 (HDAC6) degraders. Bioorg. Med. Chem. Lett. 28, 2493–2497 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • An, Z. et al. Developing potent PROTACs tools for selective degradation of HDAC6 protein. Protein Cell 10, 606–609 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yang, H. et al. Plasticity in designing PROTACs for selective and potent degradation of HDAC6. Chem. Commun. 55, 14848–14851 (2019).

    Article 
    CAS 

    Google Scholar 

  • Yang, K. et al. Development of selective histone deacetylase 6 (HDAC6) degraders recruiting Von Hippel-Lindau (VHL) E3 ubiquitin ligase. ACS Med. Chem. Lett. 11, 575–581 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sinatra, L. et al. Hydroxamic acids immobilized on resins (HAIRs): synthesis of dual-targeting HDAC inhibitors and HDAC degraders (PROTACs). Angew. Chem. Int. Ed. Engl. 59, 22494–22499 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Keuler, T. et al. Development of the first non-hydroxamate selective HDAC6 degraders. Chem. Commun. 58, 11087–11090 (2022).

    Article 
    CAS 

    Google Scholar 

  • Sinatra, L. et al. Solid-phase synthesis of cereblon-recruiting selective histone deacetylase 6 degraders (HDAC6 PROTACs) with antileukemic activity. J. Med. Chem. 65, 16860–16878 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kazi, J. U. & Ronnstrand, L. FMS-like tyrosine kinase 3/FLT3: from basic science to clinical implications. Physiol. Rev. 99, 1433–1466 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Burslem, G. M. et al. Enhancing antiproliferative activity and selectivity of a FLT-3 inhibitor by proteolysis targeting chimera conversion. J. Am. Chem. Soc. 140, 16428–16432 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chen, Y. et al. Degrading FLT3-ITD protein by proteolysis targeting chimera (PROTAC). Bioorg. Chem. 119, 105508 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Řezníčková, E. et al. Modulation of FLT3-ITD and CDK9 in acute myeloid leukaemia cells by novel proteolysis targeting chimera (PROTAC). Eur. J. Med. Chem. 243, 114792 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Deininger, M. W., Goldman, J. M. & Melo, J. V. The molecular biology of chronic myeloid leukemia. Blood 96, 3343–3356 (2000).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hantschel, O. et al. BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia. Nat. Chem. Biol. 8, 285–293 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lai, A. C. et al. Modular PROTAC design for the degradation of oncogenic BCR-ABL. Angew. Chem. Int. Ed. Engl. 55, 807–810 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Burslem, G. M. et al. Targeting BCR-ABL1 in chronic myeloid leukemia by PROTAC-mediated targeted protein degradation. Cancer Res. 79, 4744–4753 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Demizu, Y. et al. Development of BCR-ABL degradation inducers via the conjugation of an imatinib derivative and a cIAP1 ligand. Bioorg. Med. Chem. Lett. 26, 4865–4869 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Jin, Y. H. et al. Azo-PROTAC: novel light-controlled small-molecule tool for protein knockdown. J. Med. Chem. 63, 4644–4654 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Shimokawa, K. et al. Targeting the allosteric site of oncoprotein BCR-ABL as an alternative strategy for effective target protein degradation. ACS Med. Chem. Lett. 8, 1042–1047 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Eléouët, M. et al. Insights on the biological functions and diverse regulation of RNA-binding protein 39 and their implication in human diseases. Biochim. Biophys. Acta Gene Regul. Mech. 1866, 194902 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Faust, T. B. et al. Structural complementarity facilitates E7820-mediated degradation of RBM39 by DCAF15. Nat. Chem. Biol. 16, 7–14 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaloni, D., Diepstraten, S. T., Strasser, A. & Kelly, G. L. BCL-2 protein family: attractive targets for cancer therapy. Apoptosis 28, 20–38 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Khan, S. et al. A selective BCL-X(L) PROTAC degrader achieves safe and potent antitumor activity. Nat. Med. 25, 1938–1947 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kissopoulou, A., Jonasson, J., Lindahl, T. L. & Osman, A. Next generation sequencing analysis of human platelet PolyA+ mRNAs and rRNA-depleted total RNA. PLoS ONE 8, e81809 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X. et al. Utilizing PROTAC technology to address the on-target platelet toxicity associated with inhibition of BCL-X(L). Chem. Commun. 55, 14765–14768 (2019).

    Article 
    CAS 

    Google Scholar 

  • He, Y. et al. DT2216-a Bcl-xL-specific degrader is highly active against Bcl-xL-dependent T cell lymphomas. J. Hematol. Oncol. 13, 95 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jaiswal, A. et al. Resistance to the BCL-XL degrader DT2216 in T-cell acute lymphoblastic leukemia is rare and correlates with decreased BCL-XL proteolysis. Cancer Chemother. Pharmacol. 91, 89–95 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lv, D. et al. Development of a BCL-xL and BCL-2 dual degrader with improved anti-leukemic activity. Nat. Commun. 12, 6896 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Rohena, D. D. et al. Targeting venetoclax resistant CLL using a protac-based BCL-2/BCL-XL degrader. Blood. 140(Supplement 1), 497–498 (2022).

  • Xu, W. et al. Casein kinase 1α inhibits p53 downstream of MDM2-mediated autophagy and apoptosis in acute myeloid leukemia. Oncol. Rep. 44, 1895–1904 (2020).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Park, S. M. et al. Dual IKZF2 and CK1α degrader targets acute myeloid leukemia cells. Cancer Cell 41, 726–739.e711 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhong, G. et al. Targeted protein degradation in hematologic malignancies: latest updates from the 2023 ASH annual meeting. J. Hematol. Oncol. 17, 14 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nishiguchi, G. et al. Selective CK1α degraders exert antiproliferative activity against a broad range of human cancer cell lines. Nat. Commun. 15, 482 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pal Singh, S., Dammeijer, F. & Hendriks, R. W. Role of Bruton’s tyrosine kinase in B cells and malignancies. Mol. Cancer 17, 57 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Estupinan, H. Y., Berglof, A., Zain, R. & Smith, C. I. E. Comparative analysis of BTK inhibitors and mechanisms underlying adverse effects. Front Cell Dev. Biol. 9, 630942 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Y. et al. PROTAC-induced BTK degradation as a novel therapy for mutated BTK C481S induced ibrutinib-resistant B-cell malignancies. Cell Res. 28, 779–781 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Dobrovolsky, D. et al. Bruton tyrosine kinase degradation as a therapeutic strategy for cancer. Blood 133, 952–961 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Xue, G. et al. Light-induced protein degradation with photocaged PROTACs. J. Am. Chem. Soc. 141, 18370–18374 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lim, Y. S. et al. Orally bioavailable BTK PROTAC active against wild-type and C481 mutant BTKs in human lymphoma CDX mouse models. Blood Adv. 7, 92–105 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, D. et al. NRX-0492 degrades wild-type and C481 mutant BTK and demonstrates in vivo activity in CLL patient-derived xenografts. Blood 141, 1584–1596 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Casan, J. M. L. & Seymour, J. F. Degraders upgraded: the rise of PROTACs in hematological malignancies. Blood 143, 1218–1230 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Seymour, J. F. et al. First results from a phase 1, first-in-human study of the Bruton’s tyrosine kinase (BTK) degrader Bgb-16673 in patients (Pts) with relapsed or refractory (R/R) B-cell malignancies (BGB-16673-101). Blood 142, 4401–4401 (2023).

    Article 

    Google Scholar 

  • Searle, E. et al. Initial findings from a first-in-human phase 1a/b trial of NX-5948, a selective Bruton’s tyrosine kinase (BTK) degrader, in patients with relapsed/refractory B cell malignancies. Blood 142, 4473–4473 (2023).

    Article 

    Google Scholar 

  • Danilov, A. et al. A first-in-human phase 1 trial of NX-2127, a first-in-class bruton’s tyrosine kinase (BTK) dual-targeted protein degrader with immunomodulatory activity, in patients with relapsed/refractory B cell malignancies. Blood 142, 4463–4463 (2023).

    Article 

    Google Scholar 

  • Montoya, S. et al. Kinase-impaired BTK mutations are susceptible to clinical-stage BTK and IKZF1/3 degrader NX-2127. Science 383, eadi5798 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ruland, J. & Hartjes, L. CARD-BCL-10-MALT1 signalling in protective and pathological immunity. Nat. Rev. Immunol. 19, 118–134 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Fontan, L. et al. Chemically induced degradation of MALT1 to treat B-cell lymphomas. Blood. 134(Supplement 1), 2073 (2019).

  • Suzuki, N. et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 416, 750–756 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Burns, K. et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J. Exp. Med. 197, 263–268 (2003).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, J. et al. Assessing IRAK4 functions in ABC DLBCL by IRAK4 kinase inhibition and protein degradation. Cell Chem. Biol. 27, 1500–1509.e1513 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lopez-Girona, A. et al. CC-99282 is a novel cereblon E3 ligase modulator (CELMOD) agent with potent and broad antitumor activity in preclinical models of diffuse large B-cell lymphoma (DLBCL). Hematol. Oncol. 39, 315–316 (2021).

    Article 

    Google Scholar 

  • Michot, J.-M. et al. Clinical activity of CC-99282, a novel, oral small molecule cereblon E3 ligase modulator (CELMoD) agent, in patients (Pts) with relapsed or refractory non-Hodgkin lymphoma (R/R NHL)—first results from a phase 1, open-label study. Blood 138, 3574–3574 (2021).

    Article 

    Google Scholar 

  • Hagner, P. R. et al. CC-122, a pleiotropic pathway modifier, mimics an interferon response and has antitumor activity in DLBCL. Blood 126, 779–789 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cubillos-Zapata, C. et al. CC-122 immunomodulatory effects in refractory patients with diffuse large B-cell lymphoma. Oncoimmunology 5, e1231290 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ioannou, N. et al. Triggering interferon signaling in T cells with avadomide sensitizes CLL to anti-PD-L1/PD-1 immunotherapy. Blood 137, 216–231 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Carpio, C. et al. Avadomide monotherapy in relapsed/refractory DLBCL: safety, efficacy, and a predictive gene classifier. Blood 135, 996–1007 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Rasco, D. W. et al. A first-in-human study of novel cereblon modulator avadomide (CC-122) in advanced malignancies. Clin. Cancer Res. 25, 90–98 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hatake, K. et al. Phase I, multicenter, dose-escalation study of avadomide in adult Japanese patients with advanced malignancies. Cancer Sci 112, 331–338 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Michot, J. M. et al. Avadomide plus obinutuzumab in patients with relapsed or refractory B-cell non-Hodgkin lymphoma (CC-122-NHL-001): a multicentre, dose escalation and expansion phase 1 study. Lancet Haematol 7, e649–e659 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Ribrag, V. et al. Phase Ib study of combinations of avadomide (CC-122), CC-223, CC-292, and rituximab in patients with relapsed/refractory diffuse large B-cell lymphoma. EJHaem 3, 139–153 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Katzenellenbogen, J. A. et al. Structural underpinnings of oestrogen receptor mutations in endocrine therapy resistance. Nat. Rev. Cancer 18, 377–388 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Tryfonidis, K., Zardavas, D., Katzenellenbogen, B. S. & Piccart, M. Endocrine treatment in breast cancer: cure, resistance and beyond. Cancer Treat. Rev. 50, 68–81 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Hanker, A. B., Sudhan, D. R. & Arteaga, C. L. Overcoming endocrine resistance in breast cancer. Cancer Cell 37, 496–513 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wang, Y. & Tang, S. C. The race to develop oral SERDs and other novel estrogen receptor inhibitors: recent clinical trial results and impact on treatment options. Cancer Metastasis Rev 41, 975–990 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jacobson, A. Early switch to fulvestrant plus palbociclib improves outcomes in ESR1-mutated, estrogen receptor-positive metastatic breast cancer. Oncologist 27, S9–s10 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, J. et al. Discovery of ERD-308 as a highly potent proteolysis targeting chimera (PROTAC) degrader of estrogen receptor (ER). J. Med. Chem. 62, 1420–1442 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gonzalez, T. L. et al. Targeted degradation of activating estrogen receptor alpha ligand-binding domain mutations in human breast cancer. Breast Cancer Res. Treat 180, 611–622 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chen, Z. et al. Discovery of ERD-3111 as a potent and orally efficacious estrogen receptor PROTAC degrader with strong antitumor activity. J. Med. Chem. 66, 12559–12585 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gonzalez, T. L. et al. Targeted degradation of activating estrogen receptor α ligand-binding domain mutations in human breast cancer. Breast Cancer Res. Treat 180, 611–622 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Flanagan, J. et al. Abstract P5-04-18: ARV-471, an oral estrogen receptor PROTAC degrader for breast cancer. Cancer Res. 79, P5-04-18–P05-04-18 (2019).

    Article 

    Google Scholar 

  • Snyder, L. B. et al. The discovery of ARV-471, an orally bioavailable estrogen receptor degrading PROTAC for the treatment of patients with breast cancer. Cancer Res 81, 44 (2021).

    Article 

    Google Scholar 

  • Hamilton, E. et al. First-in-human safety and activity of ARV-471, a novel PROTAC estrogen receptor degrader, in ER+/HER2-locally advanced or metastatic breast cancer. Cancer Res. 82, PD13–08 (2022).

    Article 

    Google Scholar 

  • Disch, J. S. et al. Bispecific estrogen receptor alpha degraders incorporating novel binders identified using DNA-encoded chemical library screening. J. Med. Chem. 64, 5049–5066 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sakamoto, K. M. et al. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell. Proteom. 2, 1350–1358 (2003).

    Article 
    CAS 

    Google Scholar 

  • Rodriguez-Gonzalez, A. et al. Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene 27, 7201–7211 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Schneekloth, J. S. Jr. et al. Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc. 126, 3748–3754 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Salami, J. et al. Androgen receptor degradation by the proteolysis-targeting chimera ARCC-4 outperforms enzalutamide in cellular models of prostate cancer drug resistance. Commun. Biol. 1, 100 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scott, D. E. et al. Systematic investigation of the permeability of androgen Receptor PROTACs. ACS Med. Chem. Lett. 11, 1539–1547 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hung, C. L. et al. Targeting androgen receptor and the variants by an orally bioavailable Proteolysis Targeting Chimeras compound in castration resistant prostate cancer. EBioMedicine 90, 104500 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Han, X. et al. Strategies toward discovery of potent and orally bioavailable proteolysis targeting chimera degraders of androgen receptor for the treatment of prostate cancer. J. Med. Chem. 64, 12831–12854 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Neklesa, T. et al. ARV-110: an oral androgen receptor PROTAC degrader for prostate cancer. J. Clin. Oncol. 37, 10.1200 (2019).

    Article 

    Google Scholar 

  • Mullard, A. First targeted protein degrader hits the clinic. Nat. Rev. Drug Discov 18, 237–239 (2019).

    Google Scholar 

  • Gao, X. et al. Phase 1/2 study of ARV-110, an androgen receptor (AR) PROTAC degrader, in metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 40, 17–17 (2022).

    Article 

    Google Scholar 

  • Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin 71, 209–249 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Levantini, E., Maroni, G., Del Re, M. & Tenen, D. G. EGFR signaling pathway as therapeutic target in human cancers. Semin. Cancer Biol. 85, 253–275 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Herbst, R. S., Fukuoka, M. & Baselga, J. Timeline – Gefitinib—a novel targeted approach to treating cancer. Nat. Rev. Cancer 4, 956–965 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Cappuzzo, F. et al. Erlotinib as maintenance treatment in advanced non-small-cell lung cancer: a multicentre, randomised, placebo-controlled phase 3 study. Lancet Oncol 11, 521–529 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Li, D. et al. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 27, 4702–4711 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Engelman, J. A. et al. PF00299804, an irreversible Pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res 67, 11924–11932 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Cross, D. A. E. et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov 4, 1046–1061 (2014).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jia, Y. et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature 534, 129–132 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Dong, R.-F. et al. EGFR mutation mediates resistance to EGFR tyrosine kinase inhibitors in NSCLC: from molecular mechanisms to clinical research. Pharmacol. Res. 167, 105583 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhao, H. Y. et al. Discovery of potent PROTACs targeting EGFR mutants through the optimization of covalent EGFR ligands. J. Med. Chem. 65, 4709–4726 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Burslem, G. M. et al. The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chem. Biol. 25, 67–77 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, K. & Zhou, H. Proteolysis targeting chimera (PROTAC) for epidermal growth factor receptor enhances anti-tumor immunity in non-small cell lung cancer. Drug Dev. Res. 82, 422–429 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Jang, J. et al. Mutant-selective allosteric EGFR degraders are effective against a broad range of drug-resistant mutations. Angew. Chem. Int. Ed. 59, 14481–14489 (2020).

    Article 
    CAS 

    Google Scholar 

  • Du, Y. et al. HJM-561, a potent, selective, and orally bioavailable EGFR PROTAC that overcomes osimertinib-resistant EGFR triple mutations. Mol. Cancer Ther. 21, 1060–1066 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ahn, G. et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 17, 937–946 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhu, Z. et al. Targeting EGFR degradation by autophagosome degraders. Eur. J. Med. Chem. 270, 116345 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kleeff, J. et al. Pancreatic cancer. Nat. Rev. Dis. Primers. 2, 16022 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Mohammad, G. H. et al. Pyruvate kinase M2 and lactate dehydrogenase A are overexpressed in pancreatic cancer and correlate with poor outcome. PLoS ONE 11, e0151635 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, M. et al. NUSAP1-LDHA-Glycolysis-Lactate feedforward loop promotes Warburg effect and metastasis in pancreatic ductal adenocarcinoma. Cancer Lett 567, 216285 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, R. et al. Lactate dehydrogenase B is required for pancreatic cancer cell immortalization through activation of telomerase activity. Front. Oncol. 12, 821620 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Tas, F. et al. Serum levels of LDH, CEA, and CA19-9 have prognostic roles on survival in patients with metastatic pancreatic cancer receiving gemcitabine-based chemotherapy. Cancer Chemother. Pharmacol. 73, 1163–1171 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sun, N. et al. Discovery of the first lactate dehydrogenase proteolysis targeting chimera degrader for the treatment of pancreatic cancer. J. Med. Chem. 66, 596–610 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zimmermann, G. et al. Small molecule inhibition of the KRAS–PDEδ interaction impairs oncogenic KRAS signalling. Nature 497, 638–642 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lu, S. Y. et al. Ras conformational ensembles, allostery, and signaling. Chem. Rev. 116, 6607–6665 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chang, D. K., Grimmond, S. M. & Biankin, A. V. Pancreatic cancer genomics. Curr. Opin. Genet. Dev. 24, 74–81 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Li, J. et al. A role for SMARCB1 in synovial sarcomagenesis reveals that SS18-SSX induces canonical BAF destruction. Cancer Discov 11, 2620–2637 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Brien, G. L. et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. Elife 7, e41305 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mancarella, C., Morrione, A. & Scotlandi, K. PROTAC-based protein degradation as a promising strategy for targeted therapy in sarcomas. Int. J. Mol. Sci. 24, 16346 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Schroder, M. et al. DCAF1-based PROTACs with activity against clinically validated targets overcoming intrinsic- and acquired-degrader resistance. Nat. Commun. 15, 275 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Jackson, K. L. et al. Abstract ND09: the discovery and characterization of CFT8634: a potent and selective degrader of BRD9 for the treatment of SMARCB1-perturbed cancers. Cancer Res. 82, ND09–ND09 (2022).

    Article 

    Google Scholar 

  • Poling, L. L. et al. CFT8634, a clinical stage BRD9 Bi DAC™ degrader, is active in a subset of multiple myeloma cell line models and synergistic when combined with pomalidomide. Blood 142, 6594 (2023).

    Article 

    Google Scholar 

  • Morris, S. W. et al. Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 267, 316–317 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Stoica, G. E. et al. Midkine binds to anaplastic lymphoma kinase (ALK) and acts as a growth factor for different cell types. J. Biol. Chem. 277, 35990–35998 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kong, X. et al. Drug discovery targeting anaplastic lymphoma kinase (ALK). J. Med. Chem. 62, 10927–10954 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Pan, Y. et al. The resistance mechanisms and treatment strategies for ALK-rearranged non-small cell lung cancer. Front. Oncol. 11, 713530 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Powell, C. E. et al. Chemically induced degradation of anaplastic lymphoma kinase (ALK). J. Med. Chem. 61, 4249–4255 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhang, C. et al. Proteolysis targeting chimeras (PROTACs) of anaplastic lymphoma kinase (ALK). Eur. J. Med. Chem. 151, 304–314 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kang, C. H. et al. Induced protein degradation of anaplastic lymphoma kinase (ALK) by proteolysis targeting chimera (PROTAC). Biochem. Biophys. Res. Commun. 505, 542–547 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ren, C. et al. Structure-based discovery of SIAIS001 as an oral bioavailability ALK degrader constructed from Alectinib. Eur. J. Med. Chem. 217, 113335 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gao, Y. et al. Catalytic degraders effectively address kinase site mutations in EML4-ALK oncogenic fusions. J. Med. Chem. 66, 5524–5535 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chen, H. et al. Folate-guided protein degradation by immunomodulatory imide drug-based molecular glues and proteolysis targeting chimeras. J. Med. Chem. 64, 12273–12285 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Brugieres, L. et al. Efficacy and safety of crizotinib in ALK-positive systemic anaplastic large-cell lymphoma in children, adolescents, and adult patients: results of the French AcSe-crizotinib trial. Eur. J. Cancer 191, 112984 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, S. et al. Discovery of the GSH responsive “Y-PROTACs” targeting ALK and CDK4/6 as a potential treatment for cancer. Eur. J. Med. Chem. 248, 115082 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gong, L. et al. Discovery of a miniaturized PROTAC with potent activity and high selectivity. Bioorg. Chem. 136, 106556 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bellacosa, A. et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int. J. Cancer 64, 280–285 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kennedy, S. G. et al. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 11, 701–713 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • You, I. et al. Discovery of an AKT degrader with prolonged inhibition of downstream signaling. Cell Chem. Biol. 27, 66–73.e67 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhu, C. L. et al. Structure-based rational design enables efficient discovery of a new selective and potent AKT PROTAC degrader. Eur. J. Med. Chem. 238, 114459 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yu, X. et al. Discovery of potent, selective, and in vivo efficacious AKT kinase protein degraders via structure-activity relationship studies. J. Med. Chem. 65, 3644–3666 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153–166 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mughal, M. J., Bhadresha, K. & Kwok, H. F. CDK inhibitors from past to present: a new wave of cancer therapy. Semin. Cancer Biol. 88, 106–122 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • De Dominici, M. et al. Selective inhibition of Ph-positive ALL cell growth through kinase-dependent and -independent effects by CDK6-specific PROTACs. Blood 135, 1560–1573 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brand, M. et al. Homolog-selective degradation as a strategy to probe the function of CDK6 in AML. Cell Chem. Biol. 26, 300–306.e309 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Fung, L. et al. Bioavailable dual-protein degraders of CK1α and transcriptional kinase CDK9 as potential therapeutics for hematological malignancies. Blood 134, 4643–4643 (2019).

    Article 

    Google Scholar 

  • Ying, M. et al. Ubiquitin-dependent degradation of CDK2 drives the therapeutic differentiation of AML by targeting PRDX2. Blood 131, 2698–2711 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tadesse, S., Caldon, E. C., Tilley, W. & Wang, S. Cyclin-dependent kinase 2 inhibitors in cancer therapy: an update. J. Med. Chem. 62, 4233–4251 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, L. et al. Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy. Nat. Chem. Biol. 17, 567–575 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wei, M. et al. First orally bioavailable prodrug of proteolysis targeting chimera (PROTAC) degrades cyclin-dependent kinases 2/4/6 in vivo. Eur. J. Med. Chem. 209, 112903 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Xiang, Z. et al. Mcl1 haploinsufficiency protects mice from Myc-induced acute myeloid leukemia. J. Clin. Invest. 120, 2109–2118 (2010).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Minzel, W. et al. Small molecules co-targeting CKIalpha and the transcriptional kinases CDK7/9 control AML in preclinical models. Cell 175, 171–185.e125 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ball, B. J. et al. Trial in progress: a phase I trial of BTX-A51 in patients with relapsed or refractory AML or high-risk MDS. Blood 136, 18–19 (2020).

    Article 

    Google Scholar 

  • Qiu, X. et al. Discovery of selective CDK9 degraders with enhancing antiproliferative activity through PROTAC conversion. Eur. J. Med. Chem. 211, 113091 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • King, H. M. et al. Aminopyrazole based CDK9 PROTAC sensitizes pancreatic cancer cells to venetoclax. Bioorg. Med. Chem. Lett. 43, 128061 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Créancier, L. et al. Chromosomal rearrangements involving the NTRK1 gene in colorectal carcinoma. Cancer Lett 365, 107–111 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Drilon, A. et al. What hides behind the MASC: clinical response and acquired resistance to entrectinib after ETV6-NTRK3 identification in a mammary analogue secretory carcinoma (MASC). Ann. Oncol. 27, 920–926 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Skálová, A. et al. Mammary analogue secretory carcinoma of salivary glands: molecular analysis of 25 ETV6 gene rearranged tumors with lack of detection of classical ETV6-NTRK3 fusion transcript by standard RT-PCR: report of 4 cases harboring ETV6-X gene fusion. Am. J. Surg. Pathol. 40, 3–13 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Chen, S. et al. Spliceosomal targeting in acute myeloid leukemia cells with ETV6-NTRK3 fusion. Blood 114, 5042 (2009).

    Article 

    Google Scholar 

  • Strohmaier, C. et al. A splice variant of the neurotrophin receptor trkB with increased specificity for brain-derived neurotrophic factor. EMBO J 15, 3332–3337 (1996).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lagadec, C. et al. TrkA overexpression enhances growth and metastasis of breast cancer cells. Oncogene 28, 1960–1970 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Scott, L. J. Larotrectinib: first global approval. Drugs 79, 201–206 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Al-Salama, Z. T. & Keam, S. J. Entrectinib: first global approval. Drugs 79, 1477–1483 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Cui, J. et al. TPX-0005, a novel ALK/ROS1/TRK inhibitor, effectively inhibited a broad spectrum of mutations including solvent front ALK G1202R, ROS1 G2032R and TRKA G595R mutants. Eur. J. Cancer 1, S32 (2016).

    Article 

    Google Scholar 

  • Drilon, A. et al. A next-generation TRK kinase inhibitor overcomes acquired resistance to prior TRK kinase inhibition in patients with TRK fusion-positive solid tumors. Cancer Discov 7, 963–972 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Russo, M. et al. Acquired resistance to the TRK inhibitor entrectinib in colorectal cancer. Cancer Discov 6, 36–44 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Smith, B. D. et al. Altiratinib inhibits tumor growth, invasion, angiogenesis, and microenvironment-mediated drug resistance via balanced inhibition of MET, TIE2, and VEGFR2. Mol. Cancer Ther. 14, 2023–2034 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lin, C. C. et al. A phase 1, open-label, dose-escalation trial of oral TSR-011 in patients with advanced solid tumours and lymphomas. Br. J. Cancer 121, 131–138 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Patwardhan, P. P. et al. Significant blockade of multiple receptor tyrosine kinases by MGCD516 (Sitravatinib), a novel small molecule inhibitor, shows potent anti-tumor activity in preclinical models of sarcoma. Oncotarget 7, 4093–4109 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Zhao, B. & Burgess, K. TrkC-targeted kinase inhibitors and PROTACs. Mol. Pharm. 16, 4313–4318 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nat. Rev. Mol. Cell Biol. 5, 875–885 (2004).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Rushworth, L. K., Hindley, A. D., O’Neill, E. & Kolch, W. Regulation and role of Raf-1/B-Raf heterodimerization. Mol. Cell. Biol. 26, 2262–2272 (2006).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Weber, C. K., Slupsky, J. R., Kalmes, H. A. & Rapp, U. R. Active Ras induces heterodimerization of cRaf and BRaf. Cancer Res 61, 3595–3598 (2001).

    PubMed 
    CAS 

    Google Scholar 

  • Poulikakos, P. I. et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480, 387–390 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kemper, K. et al. BRAF V600E kinase domain duplication identified in therapy-refractory melanoma patient-derived xenografts. Cell Rep 16, 263–277 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Posternak, G. et al. Functional characterization of a PROTAC directed against BRAF mutant V600E. Nat. Chem. Biol. 16, 1170–1178 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Liang, Y. et al. Abstract ND05: The discovery and characterization of CFT1946: a potent, selective, and orally bioavailable degrader of mutant BRAF for the treatment of BRAF-driven cancers. Cancer Res. 83, ND05–ND05 (2023).

    Article 

    Google Scholar 

  • Filippakopoulos, P. et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214–231 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Rathert, P. et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature 525, 543–547 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pawar, A., Gollavilli, P. N., Wang, S. & Asangani, I. A. Resistance to BET inhibitor leads to alternative therapeutic vulnerabilities in castration-resistant prostate cancer. Cell Rep 22, 2236–2245 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kurimchak, A. M. et al. Resistance to BET bromodomain inhibitors is mediated by kinome reprogramming in ovarian cancer. Cell Rep 16, 1273–1286 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Shimamura, T. et al. Efficacy of BET bromodomain inhibition in Kras-mutant non-small cell lung cancer. Clin. Cancer Res. 19, 6183–6192 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lu, J. et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem. Biol. 22, 755–763 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Chen, J. et al. Adjusted degradation of BRD4 S and BRD4 L based on fine structural modifications of the pyrrolopyridone scaffold. Eur. J. Med. Chem. 236, 114259 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Klein, V. G. et al. Amide-to-ester substitution as a strategy for optimizing PROTAC permeability and cellular activity. J. Med. Chem. 64, 18082–18101 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pfaff, P., Samarasinghe, K. T. G., Crews, C. M. & Carreira, E. M. Reversible spatiotemporal control of induced protein degradation by bistable PhotoPROTACs. ACS Cent. Sci. 5, 1682–1690 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Guo, L. et al. A platform for the rapid synthesis of proteolysis targeting chimeras (Rapid-TAC) under miniaturized conditions. Eur. J. Med. Chem. 236, 114317 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pillow, T. H. et al. Antibody conjugation of a chimeric BET degrader enables in vivo activity. ChemMedChem 15, 17–25 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zimmerman, S. M., Lin, P. N. & Souroullas, G. P. Non-canonical functions of EZH2 in cancer. Front. Oncol. 13, 1233953 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Liu, Y. & Yang, Q. The roles of EZH2 in cancer and its inhibitors. Med. Oncol. 40, 167 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ribeiro, M. L., Sanchez Vinces, S., Mondragon, L. & Roue, G. Epigenetic targets in B- and T-cell lymphomas: latest developments. Ther. Adv. Hematol. 14, 20406207231173485 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hsu, J. H. et al. EED-Targeted PROTACs Degrade EED, EZH2, and SUZ12 in the PRC2 Complex. Cell Chem. Biol. 27, 41–46.e17 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Potjewyd, F. et al. Degradation of polycomb repressive complex 2 with an EED-targeted bivalent chemical degrader. Cell Chem. Biol. 27, 47–56.e15 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Liu, Z. et al. Design and synthesis of EZH2-based PROTACs to degrade the PRC2 complex for targeting the noncatalytic activity of EZH2. J. Med. Chem. 64, 2829–2848 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tu, Y. et al. Design, synthesis, and evaluation of VHL-based EZH2 degraders to enhance therapeutic activity against lymphoma. J. Med. Chem. 64, 10167–10184 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, J. et al. EZH2 noncanonically binds cMyc and p300 through a cryptic transactivation domain to mediate gene activation and promote oncogenesis. Nat. Cell Biol. 24, 384–399 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bashore, F. M. et al. PROTAC linkerology leads to an optimized bivalent chemical degrader of polycomb repressive complex 2 (PRC2) components. ACS Chem. Biol. 18, 494–507 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kim, S. B. et al. Dual targeting of EZH2 degradation and EGFR/HER2 inhibition for enhanced efficacy against Burkitt’s lymphoma. Cancers 15, 4472 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kong, L. et al. Selective degradation of the p53-R175H oncogenic hotspot mutant by an RNA aptamer-based PROTAC. Clin. Transl. Med. 13, e1191 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Song, M. S. et al. The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature 455, 813–817 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • van Loosdregt, J. et al. Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 39, 259–271 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Z. et al. Deubiquitination of Ci/Gli by Usp7/HAUSP regulates hedgehog signaling. Dev. Cell. 34, 58–72 (2015).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cummins, J. M. et al. Tumour suppression: disruption of HAUSP gene stabilizes p53. Nature 428, 1 p following 486 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Murgai, A. et al. Targeting the deubiquitinase USP7 for degradation with PROTACs. Chem. Commun. 58, 8858–8861 (2022).

    Article 
    CAS 

    Google Scholar 

  • Pei, Y. et al. Discovery of a potent and selective degrader for USP7. Angew. Chem. Int. Ed. Engl. 61, e202204395 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kastan, M. B., Canman, C. E. & Leonard, C. J. P53, cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Rev 14, 3–15 (1995).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Baluapuri, A., Wolf, E. & Eilers, M. Target gene-independent functions of MYC oncoproteins. Nat. Rev. Mol. Cell Biol. 21, 255–267 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Nishida, Y. et al. C-MYC targeting by degradation: novel dual c-Myc/GSPT1 degrader GT19715 exerts profound cell kill in vitro and in vivo in acute myeloid leukemia and lymphomas. Clin. Lymphoma Myeloma Leuk 22, S218–S218 (2022).

    Article 
    CAS 

    Google Scholar 

  • Wang, E. S. et al. Acute pharmacological degradation of Helios destabilizes regulatory T cells. Nat. Chem. Biol. 17, 711–717 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sievers, Q. L. et al. Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN. Science 362, eaat0572 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, S.-M. et al. IKZF2 drives leukemia stem cell self-renewal and inhibits myeloid differentiation. Cell. Stem Cell. 24, 153–165.e157 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bonazzi, S. et al. Discovery and characterization of a selective IKZF2 glue degrader for cancer immunotherapy. Cell Chem. Biol. 30, 235–247.e212 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Park, S. et al. Abstract 4512: discovery of highly potent, selective, and orally bioavailable IKZF2 degrader and its anti-tumor activity in syngeneic mouse models. Cancer Res 84, 4512–4512 (2024).

    Article 

    Google Scholar 

  • Chauvin, C., Salhi, S. & Jean-Jean, O. Human eukaryotic release factor 3a depletion causes cell cycle arrest at G1 phase through inhibition of the mTOR pathway. Mol. Cell. Biol. 27, 5619–5629 (2007).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hansen, J. D. et al. CC-90009: a cereblon E3 ligase modulating drug that promotes selective degradation of GSPT1 for the treatment of acute myeloid leukemia. J. Med. Chem. 64, 1835–1843 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Jin, L. et al. A novel cereblon E3 ligase modulator eradicates acute myeloid leukemia stem cells through degradation of translation termination factor GSPT1. Blood 134, 3940 (2019).

    Article 

    Google Scholar 

  • Uy, G. L. et al. Clinical activity of CC-90009, a cereblon E3 ligase modulator and first-in-class GSPT1 degrader, as a single agent in patients with relapsed or refractory acute myeloid leukemia (R/R AML): first results from a phase I dose-finding study. Blood 134, 232–232 (2019).

    Article 

    Google Scholar 

  • Yao, T.-W. S. et al. Abstract 2048: Discovery of induction and release of IL-1b are unique and on-target effects of GSPT1 degradation that provide potential mitigation strategies to hypotension in the CC-90009-AML-001 phase 1 trial. Cancer Res 80, 2048–2048 (2020).

    Article 

    Google Scholar 

  • Pierce, D. W. et al. Synergistic combination activity of the novel GSPT1 degrader CC-90009 in acute myeloid leukemia models. Blood 138, 3330–3330 (2021).

    Article 

    Google Scholar 

  • Surka, C. et al. CC-90009, a novel cereblon E3 ligase modulator, targets acute myeloid leukemia blasts and leukemia stem cells. Blood 137, 661–677 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gavory, G. et al. Abstract 3449: development of MRT-2359, an orally bioavailable GSPT1 molecular glue degrader, for the treatment of lung cancers with MYC-induced translational addiction. Cancer Res 83, 3449–3449 (2023).

    Article 

    Google Scholar 

  • Chourasia, A. H. et al. BTX-1188, a first-in-class dual degrader of GSPT1 and IKZF1/3, for treatment of acute myeloid leukemia (AML) and solid tumors. J. Clin. Oncol. 40, 7025–7025 (2022).

    Article 

    Google Scholar 

  • Milburn, M. V. et al. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247, 939–945 (1990).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Prior, I. A., Lewis, P. D. & Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res 72, 2457–2467 (2012).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Xue, J. Y. et al. Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature 577, 421–425 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ryan, M. B. et al. Vertical Pathway Inhibition Overcomes Adaptive Feedback Resistance to KRAS(G12C) Inhibition. Clin. Cancer Res. 26, 1633–1643 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhou, C. et al. Design, synthesis, and biological evaluation of potent and selective PROTAC degraders of oncogenic KRAS(G12D). J. Med. Chem. 67, 1147–1167 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Nagashima, T. et al. ASP3082, a First-in-class novel KRAS G12D degrader, exhibits remarkable anti-tumor activity in KRAS G12D mutated cancer models. Eur. J. Cancer 174, S30 (2022).

    Article 

    Google Scholar 

  • Johnson, D. E., O’Keefe, R. A. & Grandis, J. R. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat. Rev. Clin. Oncol. 15, 234–248 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yu, H., Kortylewski, M. & Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat. Rev. Immunol. 7, 41–51 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bai, L. et al. A potent and selective small-molecule degrader of STAT3 achieves complete tumor regression in vivo. Cancer Cell 36, 498–511.e417 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Heppler, L. N. & Frank, D. A. Inhibit versus destroy: are PROTAC degraders the solution to targeting STAT3? Cancer Cell 36, 459–461 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhou, H. et al. SD-91 as a potent and selective STAT3 degrader capable of achieving complete and long-lasting tumor regression. ACS Med. Chem. Lett. 12, 996–1004 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Shastri, A. et al. Preliminary safety, pharmacokinetics, pharmacodynamics and clinical activity of KT-333, a targeted protein degrader of STAT3, in patients with relapsed or refractory lymphomas, large granular lymphocytic leukemia, and solid tumors. Blood 142, 3081–3081 (2023).

    Article 

    Google Scholar 

  • Iwai, Y. et al. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl Acad. Sci. USA 99, 12293–12297 (2002).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wu, Q. et al. Small molecule inhibitors targeting the PD-1/PD-L1 signaling pathway. Acta Pharmacol. Sin. 42, 1–9 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. In vitro and in vivo degradation of programmed cell death ligand 1 (PD-L1) by a proteolysis targeting chimera (PROTAC). Bioorg. Chem. 111, 104833 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sun, Y. et al. Discovery of the first potent, selective, and in vivo efficacious polo-like kinase 4 proteolysis targeting chimera degrader for the treatment of TRIM37-amplified breast cancer. J. Med. Chem. 66, 8200–8221 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Erkkinen, M. G., Kim, M. O. & Geschwind, M. D. Clinical neurology and epidemiology of the major neurodegenerative diseases. Cold Spring Harb. Perspect. Biol. 10, a033118 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scheltens, P. et al. Alzheimer’s disease. Lancet 397, 1577–1590 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Serlin, Y., Shelef, I., Knyazer, B. & Friedman, A. Anatomy and physiology of the blood-brain barrier. Semin. Cell Dev. Biol. 38, 2–6 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murphy, M. P. & LeVine, H. 3rd Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis. 19, 311–323 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ballatore, C., Lee, V. M. & Trojanowski, J. Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci. 8, 663–672 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chu, T. T. et al. Specific knockdown of endogenous Tau protein by peptide-directed ubiquitin-proteasome degradation. Cell Chem. Biol. 23, 453–461 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Silva, M. C. et al. Targeted degradation of aberrant tau in frontotemporal dementia patient-derived neuronal cell models. Elife 8, e45457 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johnson, G. V. & Bailey, C. D. Tau, where are we now? J. Alzheimer’s Dis. 4, 375–398 (2002).

    Article 
    CAS 

    Google Scholar 

  • del Ser, T. et al. Treatment of Alzheimer’s Disease with the GSK-3 inhibitor tideglusib: a pilot study. J. Alzheimer’s Dis. 33, 205–215 (2012).

    Article 

    Google Scholar 

  • Qu, L. et al. Discovery of PT-65 as a highly potent and selective Proteolysis-targeting chimera degrader of GSK3 for treating Alzheimer’s disease. Eur. J. Med. Chem. 226, 113889 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Phan, T., Zhang, X. H., Rosen, S. & Melstrom, L. G. P38 kinase in gastrointestinal cancers. Cancer Gene Ther 30, 1181–1189 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Son, S. H. et al. Chemical knockdown of phosphorylated p38 mitogen-activated protein kinase (MAPK) as a novel approach for the treatment of Alzheimer′s disease. ACS Cent. Sci. 9, 417–426 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • DeTure, M. A. & Dickson, D. W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 14, 32 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, T. K. & Yankee, E. L. A review on Parkinson’s disease treatment. Neuroimmunol. Neuroinflamm. 8, 222–244 (2021).

    Article 
    CAS 

    Google Scholar 

  • Del Tredici, K. & Braak, H. Review: Sporadic Parkinson’s disease: development and distribution of α-synuclein pathology. Neuropathol. Appl. Neurobiol. 42, 33–50 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Simon, C., Soga, T., Okano, H. J. & Parhar, I. α-Synuclein-mediated neurodegeneration in Dementia with Lewy bodies: the pathobiology of a paradox. Cell Biosci. 11, 196 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wen, T., Chen, J., Zhang, W. & Pang, J. Design, synthesis and biological evaluation of α-synuclein proteolysis-targeting chimeras. Molecules 28, 4458 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Pedrini, M. et al. Synthesis and preliminary characterization of putative Anle138b-centered PROTACs against α-Synuclein aggregation. Pharmaceutics 15, 1467 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhu, W. et al. Discovery of effective dual PROTAC degraders for neurodegenerative disease-associated aggregates. J. Med. Chem. 67, 3448–3466 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Islam, M. S. & Moore, D. J. Mechanisms of LRRK2-dependent neurodegeneration: role of enzymatic activity and protein aggregation. Biochem. Soc. Trans. 45, 163–172 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Iannotta, L. & Greggio, E. LRRK2 signaling in neurodegeneration: two decades of progress. Essays Biochem 65, 859–872 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sobu, Y. et al. Pathogenic LRRK2 regulates ciliation probability upstream of tau tubulin kinase 2 via Rab10 and RILPL1 proteins. Proc. Natl Acad. Sci. USA 118, e2005894118 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Konstantinidou, M. et al. The tale of proteolysis targeting chimeras (PROTACs) for Leucine-Rich Repeat Kinase 2 (LRRK2). ChemMedChem 16, 959–965 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Liu, X. et al. Discovery of XL01126: a potent, fast, cooperative, selective, orally bioavailable, and blood-brain barrier penetrant PROTAC degrader of leucine-rich repeat kinase 2. J. Am. Chem. Soc. 144, 16930–16952 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Reiner, A., Dragatsis, I. & Dietrich, P. Genetics and neuropathology of Huntington’s disease. Int. Rev. Neurobiol. 98, 325–372 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • DiFiglia, M. et al. Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277, 1990–1993 (1997).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tomoshige, S. et al. Discovery of small molecules that induce the degradation of huntingtin. Angew. Chem. Int. Ed. Engl. 56, 11530–11533 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Li, Z. et al. ATTEC: a potential new approach to target proteinopathies. Autophagy 16, 185–187 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhou, Y. F. et al. The peptide-directed lysosomal degradation of CDK5 exerts therapeutic effects against stroke. Aging Dis 10, 1140–1145 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alberti, K. G. et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 1640–1645 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Fahed, G. et al. Metabolic syndrome: updates on pathophysiology and management in 2021. Int. J. Mol. Sci. 23, 786 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Li, M. X. et al. Degradation versus inhibition: development of proteolysis-targeting chimeras for overcoming statin-induced compensatory upregulation of 3-Hydroxy-3-methylglutaryl coenzyme A reductase. J. Med. Chem. 63, 4908–4928 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yang, Z. et al. Association of blood lipids, atherosclerosis and statin use with dementia and cognitive impairment after stroke: a systematic review and meta-analysis. Ageing Res Rev 57, 100962 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Chung, J. W. et al. Intensive statin treatment in acute ischaemic stroke patients with intracranial atherosclerosis: a high-resolution magnetic resonance imaging study (STAMINA-MRI Study). J. Neurol. Neurosurg. Psychiatry 91, 204–211 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Hwang, S. et al. Contribution of accelerated degradation to feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol metabolism in the liver. J. Biol. Chem. 291, 13479–13494 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Rosenson, R. S. et al. An assessment by the Statin Muscle Safety Task Force: 2014 update. J. Clin. Lipidol. 8, S58–S71 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Henriksbo, B. D. et al. Statins promote interleukin-1β-dependent adipocyte insulin resistance through lower prenylation, not cholesterol. Diabetes 68, 1441–1448 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Alvarez-Jimenez, L. et al. Effects of statin therapy on glycemic control and insulin resistance: a systematic review and meta-analysis. Eur. J. Pharmacol. 947, 175672 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • She, J. et al. Statins aggravate insulin resistance through reduced blood glucagon-like peptide-1 levels in a microbiota-dependent manner. Cell Metab 36, 408–421.e405 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Luo, G. et al. Discovery of an orally active VHL-recruiting PROTAC that achieves robust HMGCR degradation and potent hypolipidemic activity in vivo. Acta Pharm. Sin. B. 11, 1300–1314 (2021).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Haemmerle, G. et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, 734–737 (2006).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Speliotes, E. K. et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet 7, e1001324 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Romeo, S. et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat. Genet. 40, 1461–1465 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • BasuRay, S. et al. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proc. Natl Acad. Sci. USA 116, 9521–9526 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wang, B. & Tontonoz, P. Liver X receptors in lipid signalling and membrane homeostasis. Nat. Rev. Endocrinol. 14, 452–463 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Viennois, E. et al. Selective liver X receptor modulators (SLiMs): What use in human health? Mol. Cell. Endocrinol. 351, 129–141 (2012).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Grefhorst, A. et al. Stimulation of lipogenesis by pharmacological activation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J. Biol. Chem. 277, 34182–34190 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Xu, H. et al. Development of agonist-based PROTACs targeting liver X receptor. Front Chem 9, 674967 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lee, S. H., Lee, J. H. & Im, S. S. The cellular function of SCAP in metabolic signaling. Exp. Mol. Med. 52, 724–729 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Brown, M. S., Radhakrishnan, A. & Goldstein, J. L. Retrospective on cholesterol homeostasis: the central role of scap. Annu. Rev. Biochem. 87, 783–807 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Li, D. et al. SCAPknockdown in vascular smooth muscle cells alleviates atherosclerosis plaque formationviaup-regulating autophagy inApoE−/−mice. FASEB J 33, 3437–3450 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Zheng, Z.-G. et al. Discovery of a potent SCAP degrader that ameliorates HFD-induced obesity, hyperlipidemia and insulin resistance via an autophagy-independent lysosomal pathway. Autophagy 17, 1592–1613 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Costet, P., Krempf, M. & Cariou, B. PCSK9 and LDL cholesterol: unravelling the target to design the bullet. Trends Biochem. Sci. 33, 426–434 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hummelgaard, S. et al. Targeting PCSK9 to tackle cardiovascular disease. Pharmacol. Ther. 249, 108480 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, X. et al. PCSK9 inhibitors for secondary prevention in patients with cardiovascular diseases: a bayesian network meta-analysis. Cardiovasc. Diabetol. 21, 107 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bhardwaj, V. K. & Purohit, R. Potential acridinedione derivatives for the development of a heterobifunctional PROTAC for targeted degradation of PCSK9 protein. Appl. Mater. Today 38, 102186 (2024).

    Article 

    Google Scholar 

  • Giguère, V. Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr. Rev. 29, 677–696 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Vanacker, J. M., Delmarre, C., Guo, X. J. & Laudet, V. Activation of the osteopontin promoter by the orphan nuclear receptor estrogen receptor related α. Cell Growth Differ 9, 1007–1014 (1998).

    PubMed 
    CAS 

    Google Scholar 

  • Patch, R. J. et al. Identification of diaryl ether-based ligands for estrogen-related receptor α as potential antidiabetic agents. J. Med. Chem. 54, 788–808 (2011).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Gallet, M. & Vanacker, J. M. ERR receptors as potential targets in osteoporosis. Trends Endocrinol. Metab. 21, 637–641 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zheng, Z. G. et al. Dual targeting of SREBP2 and ERRα by carnosic acid suppresses RANKL-mediated osteoclastogenesis and prevents ovariectomy-induced bone loss. Cell Death Differ 27, 2048–2065 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Peng, L. et al. Identification of new small-molecule inducers of estrogen-related receptor α (ERRα) degradation. ACS Med. Chem. Lett. 10, 767–772 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Han, M. & Sun, Y. Pharmacological targeting of Tripartite Motif Containing 24 for the treatment of glioblastoma. J. Transl. Med. 19, 505 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gechijian, L. N. et al. Functional TRIM24 degrader via conjugation of ineffectual bromodomain and VHL ligands. Nat. Chem. Biol. 14, 405–412 (2018).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yu, T. et al. Modulation of M2 macrophage polarization by the crosstalk between Stat6 and Trim24. Nat. Commun. 10, 4353 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chinetti-Gbaguidi, G., Colin, S. & Staels, B. Macrophage subsets in atherosclerosis. Nat. Rev. Cardiol. 12, 10–17 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kuznetsova, T., Prange, K. H. M., Glass, C. K. & de Winther, M. P. J. Transcriptional and epigenetic regulation of macrophages in atherosclerosis. Nat. Rev. Cardiol. 17, 216–228 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Kim, H. et al. Exosome-guided phenotypic switch of M1 to M2 macrophages for cutaneous wound healing. Adv. Sci. 6, 1900513 (2019).

    Article 
    CAS 

    Google Scholar 

  • Huang, J. H. et al. Bioinspired PROTAC-induced macrophage fate determination alleviates atherosclerosis. Acta Pharmacol. Sin. 44, 1962–1976 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Byon, J. C., Kusari, A. B. & Kusari, J. Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction. Mol. Cell. Biochem. 182, 101–108 (1998).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Meshkani, R. et al. Polymorphisms within the protein tyrosine phosphatase 1B (PTPN1) gene promoter: functional characterization and association with type 2 diabetes and related metabolic traits. Clin. Chem. 53, 1585–1592 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Koren, S. & Fantus, I. G. Inhibition of the protein tyrosine phosphatase PTP1B: potential therapy for obesity, insulin resistance and type-2 diabetes mellitus. Best. Pract. Res. Clin. Endocrinol. Metab. 21, 621–640 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Liu, R. et al. Human protein tyrosine phosphatase 1B (PTP1B): from structure to clinical inhibitor perspectives. Int. J. Mol. Sci. 23, 7027 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yang, Z. et al. Discovery of selective proteolysis-targeting chimera degraders targeting PTP1B as long-term hypoglycemic agents. J. Med. Chem. 67, 7569–7584 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Julien, S. G. et al. Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nat. Genet. 39, 338–346 (2007).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Baumgartner, C. K. et al. The PTPN2/PTPN1 inhibitor ABBV-CLS-484 unleashes potent anti-tumour immunity. Nature 622, 850–862 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Olloquequi, J. et al. Protein tyrosine phosphatase 1B (PTP1B) as a potential therapeutic target for neurological disorders. Biomed. Pharmacother. 155, 113709 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, L., Wang, F. S. & Gershwin, M. E. Human autoimmune diseases: a comprehensive update. J. Intern. Med. 278, 369–395 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Coronel-Restrepo, N., Posso-Osorio, I., Naranjo-Escobar, J. & Tobón, G. J. Autoimmune diseases and their relation with immunological, neurological and endocrinological axes. Autoimmun. Rev. 16, 684–692 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Meyer, K. C., Decker, C. & Baughman, R. Toxicity and monitoring of immunosuppressive therapy used in systemic autoimmune diseases. Clin. Chest Med. 31, 565–588 (2010).

    Article 
    PubMed 

    Google Scholar 

  • Frasca, L. & Lande, R. Toll-like receptors in mediating pathogenesis in systemic sclerosis. Clin. Exp. Immunol. 201, 14–24 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Caielli, S., Wan, Z. & Pascual, V. Systemic lupus erythematosus pathogenesis: interferon and beyond. Annu. Rev. Immunol. 41, 533–560 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Arleevskaya, M. I. et al. Toll-like receptors, infections, and rheumatoid arthritis. Clin. Rev. Allergy Immunol. 58, 172–181 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Ackerman, L. et al. IRAK4 degrader in hidradenitis suppurativa and atopic dermatitis: a phase 1 trial. Nat. Med. 29, 3127–3136 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kalliolias, G. D., Basdra, E. K. & Papavassiliou, A. G. Targeting TLR signaling cascades in systemic lupus erythematosus and rheumatoid arthritis: an update. Biomedicines 12, 138 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yamaoka, K. et al. The Janus kinases (Jaks). Genome Biol 5, 253 (2004).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, P. et al. Janus kinases (JAKs): the efficient therapeutic targets for autoimmune diseases and myeloproliferative disorders. Eur. J. Med. Chem. 192, 112155 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Banerjee, S. et al. JAK-STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs 77, 521–546 (2017).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Elmariah, S. B., Smith, J. S. & Merola, J. F. JAK in the [Black] Box: a dermatology perspective on systemic JAK inhibitor safety. Am. J. Clin. Dermatol. 23, 427–431 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Wu, J. et al. JAK1/JAK2 degraders based on PROTAC for topical treatment of atopic dermatitis. Biomed. Pharmacother. 171, 116167 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lin, P. et al. PJ-001, a small-molecule proteolysis-targeting chimera, ameliorates atopic dermatitis-like inflammation in mice by inhibiting the JAK2/STAT3 pathway and repairing the skin barrier. Exp. Ther. Med. 27, 176 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Chang, Y. et al. Degradation of Janus kinases in CRLF2-rearranged acute lymphoblastic leukemia. Blood 138, 2313–2326 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Leus, N. G. J., Zwinderman, M. R. H. & Dekker, F. J. Histone deacetylase 3 (HDAC 3) as emerging drug target in NF-κB-mediated inflammation. Curr. Opin. Chem. Biol. 33, 160–168 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Cao, F. et al. Induced protein degradation of histone deacetylases 3 (HDAC3) by proteolysis targeting chimera (PROTAC). Eur. J. Med. Chem. 208, 112800 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Palmer, C. D. et al. Bmx tyrosine kinase regulates TLR4-induced IL-6 production in human macrophages independently of p38 MAPK and NFκB activity. Blood 111, 1781–1788 (2008).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Lou, Y. et al. Structure-based drug design of RN486, a potent and selective Bruton’s tyrosine kinase (BTK) inhibitor, for the treatment of rheumatoid arthritis. J. Med. Chem. 58, 512–516 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hopkins, B. T. et al. Discovery and preclinical characterization of BIIB091, a reversible, selective BTK inhibitor for the treatment of multiple sclerosis. J. Med. Chem. 65, 1206–1224 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Caldwell, R. D. et al. Discovery of evobrutinib: an oral, potent, and highly selective, covalent Bruton’s tyrosine kinase (BTK) inhibitor for the treatment of immunological diseases. J. Med. Chem. 62, 7643–7655 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Huang, J. et al. Discovery of Ibrutinib-based BTK PROTACs with in vivo anti-inflammatory efficacy by inhibiting NF-κB activation. Eur. J. Med. Chem. 259, 115664 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ablasser, A. & Chen, Z. J. cGAS in action: expanding roles in immunity and inflammation. Science 363, eaat8657 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hopfner, K.-P. & Hornung, V. Molecular mechanisms and cellular functions of cGAS–STING signalling. Nat. Rev. Mol. Cell Biol. 21, 501–521 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Ou, L., Zhang, A., Cheng, Y. & Chen, Y. The cGAS-STING pathway: a promising immunotherapy target. Front. Immunol. 12, 795048 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Decout, A., Katz, J. D., Venkatraman, S. & Ablasser, A. The cGAS–STING pathway as a therapeutic target in inflammatory diseases. Nat. Rev. Immunol. 21, 548–569 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Liu, J. et al. Novel CRBN-recruiting proteolysis-targeting chimeras as degraders of stimulator of interferon genes with in vivo anti-inflammatory efficacy. J. Med. Chem. 65, 6593–6611 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Feikin, D. R. et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. Lancet 399, 924–944 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Chen, J., Wang, R., Gilby, N. B. & Wei, G. W. Omicron variant (B.1.1.529): infectivity, vaccine breakthrough, and antibody resistance. J. Chem. Inf. Model. 62, 412–422 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Linnakoski, R. et al. Antiviral agents from fungi: diversity, mechanisms and potential applications. Front. Microbiol. 9, 2325 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Attia, D. et al. The adverse effects of interferon-free regimens in 149 816 chronic hepatitis C treated Egyptian patients. Aliment. Pharmacol. Ther. 47, 1296–1305 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Mesner, D., Hotter, D., Kirchhoff, F. & Jolly, C. Loss of Nef-mediated CD3 down-regulation in the HIV-1 lineage increases viral infectivity and spread. Proc. Natl Acad. Sci. USA 117, 7382–7391 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Quaranta, M. G., Mattioli, B., Giordani, L. & Viora, M. Immunoregulatory effects of HIV-1 Nef protein. BioFactors 35, 169–174 (2009).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Januário, Y. C. & daSilva, L. L. P. Hijacking of endocytosis by HIV-1 Nef is becoming crystal clear. Nat. Struct. Mol. Biol. 27, 773–775 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Omondi, F. H. et al. HIV subtype and nef-mediated immune evasion function correlate with viral reservoir size in early-treated individuals. J. Virol. 93, e01832 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Emert-Sedlak, L. A. et al. PROTAC-mediated degradation of HIV-1 Nef efficiently restores cell-surface CD4 and MHC-I expression and blocks HIV-1 replication. Cell Chem. Biol. 31, 658–668.e614 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Razavi-Shearer, D. et al. Global prevalence, cascade of care, and prophylaxis coverage of hepatitis B in 2022: a modelling study. Lancet Gastroenterol. Hepatol. 8, 879–907 (2023).

    Article 
    CAS 

    Google Scholar 

  • Fanning, G. C., Zoulim, F., Hou, J. & Bertoletti, A. Therapeutic strategies for hepatitis B virus infection: towards a cure. Nat. Rev. Drug Discov. 18, 827–844 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sekiba, K. et al. HBx-induced degradation of Smc5/6 complex impairs homologous recombination-mediated repair of damaged DNA. J. Hepatol. 76, 53–62 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yuan, S. et al. HBV X protein induces degradation of UBXN7, a novel negative regulator of NF-κB signaling, to promote HBV replication. Cell. Mol. Gastroenterol. Hepatol. 15, 179–195 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Montrose, K. & Krissansen, G. W. Design of a PROTAC that antagonizes and destroys the cancer-forming X-protein of the hepatitis B virus. Biochem. Biophys. Res. Commun. 453, 735–740 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Xia, Y. & Guo, H. Hepatitis B virus cccDNA: formation, regulation and therapeutic potential. Antivir. Res. 180, 104824 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Hong, X., Kim, E. S. & Guo, H. Epigenetic regulation of hepatitis B virus covalently closed circular DNA: Implications for epigenetic therapy against chronic hepatitis B. Hepatology 66, 2066–2077 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Yu, X. et al. Screening of an epigenetic compound library identifies BRD4 as a potential antiviral target for hepatitis B virus covalently closed circular DNA transcription. Antivir. Res. 211, 105552 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Sonderup, M. W. et al. Hepatitis C in sub-Saharan Africa: the current status and recommendations for achieving elimination by 2030. Lancet Gastroenterol. Hepatol. 2, 910–919 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Kieffer, T. L. & George, S. Resistance to hepatitis C virus protease inhibitors. Curr. Opin. Virol. 8, 16–21 (2014).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Li, K. et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl Acad. Sci. USA 102, 2992–2997 (2005).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kwong, A. D. et al. Hepatitis C virus NS3/4A protease. Antivir. Res. 40, 1–18 (1998).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • de Wispelaere, M. et al. Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations. Nat. Commun. 10, 3468 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Griffiths, P., Baraniak, I. & Reeves, M. The pathogenesis of human cytomegalovirus. J. Pathol. 235, 288–297 (2014).

    Article 

    Google Scholar 

  • Syrigos, G. V. et al. Abemaciclib restricts HCMV replication by suppressing pUL97-mediated phosphorylation of SAMHD1. Antivir. Res. 217, 105689 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wild, M. et al. Cyclin-Dependent Kinases (CDKs) and the Human Cytomegalovirus-Encoded CDK Ortholog pUL97 Represent Highly Attractive Targets for Synergistic Drug Combinations. Int. J. Mol. Sci. 23, 2493 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zydek, M., Hagemeier, C. & Wiebusch, L. Cyclin-dependent kinase activity controls the onset of the HCMV lytic cycle. PLoS Pathog 6, e1001096 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hahn, F. et al. Development of a PROTAC-Based Targeting Strategy Provides a Mechanistically Unique Mode of Anti-Cytomegalovirus Activity. Int. J. Mol. Sci. 22, 12858 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhang, J. et al. Optimization of N-substituted oseltamivir derivatives as potent inhibitors of group-1 and -2 influenza A neuraminidases, including a drug-resistant variant. J. Med. Chem. 61, 6379–6397 (2018).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Memoli, M. J. et al. Rapid selection of oseltamivir- and peramivir-resistant pandemic H1N1 virus during therapy in 2 immunocompromised hosts. Clin. Infect. Dis. 50, 1252–1255 (2010).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhao, J. et al. An anti-influenza A virus microbial metabolite acts by degrading viral endonuclease PA. Nat. Commun. 13, 2079 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Zhao, N. et al. Generation of host-directed and virus-specific antivirals using targeted protein degradation promoted by small molecules and viral RNA mimics. Cell Host Microbe 31, 1154–1169.e1110 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Li, H. et al. PROTAC targeting cyclophilin A controls virus-induced cytokine storm. iScience 26, 107535 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Marinella, M. A. Indomethacin and resveratrol as potential treatment adjuncts for SARS-CoV-2/COVID-19. Int. J. Clin. Pract. 74, e13535 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Shekhar, N. et al. Indomethacin: an exploratory study of antiviral mechanism and host-pathogen interaction in COVID-19. Expert Rev. Anti Infect. Ther. 20, 383–390 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Desantis, J. et al. Indomethacin-based PROTACs as pan-coronavirus antiviral agents. Eur. J. Med. Chem. 226, 113814 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Desantis, J. et al. Design, synthesis, and biological evaluation of first-in-class indomethacin-based PROTACs degrading SARS-CoV-2 main protease and with broad-spectrum antiviral activity. Eur. J. Med. Chem. 268, 116202 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Alugubelli, Y. R. et al. Discovery of first-in-class PROTAC degraders of SARS-CoV-2 main protease. J. Med. Chem. 67, 6495–6507 (2024).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Gilbertson, B. & Subbarao, K. A new route to vaccines using PROTACs. Nat. Biotechnol. 40, 1328–1329 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Si, L. et al. Generation of a live attenuated influenza A vaccine by proteolysis targeting. Nat. Biotechnol. 40, 1370–1377 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Antonarakis, S. E. et al. Down syndrome. Nat. Rev. Dis. Prim. 6, 9 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Asim, A. et al. Down syndrome: an insight of the disease. J. Biomed. Sci. 22, 41 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. et al. Rational screening for cooperativity in small-molecule inducers of protein-protein associations. J. Am. Chem. Soc. 145, 23281–23291 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bhela, I. P. et al. A versatile and sustainable multicomponent platform for the synthesis of protein degraders: proof-of-concept application to BRD4-degrading PROTACs. J. Med. Chem. 65, 15282–15299 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Mslati, H. et al. PROTACable is an integrative computational pipeline of 3-D modeling and deep learning to automate the de novo design of PROTACs. J. Chem. Inf. Model. 64, 3034–3046 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, X. et al. New strategy for renal fibrosis: targeting Smad3 proteins for ubiquitination and degradation. Biochem. Pharmacol. 116, 200–209 (2016).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, L. & Buck, M. Molecular simulations of a dynamic protein complex: role of salt-bridges and polar interactions in configurational transitions. Biophys. J. 105, 2412–2417 (2013).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Xie, L. & Xie, L. Elucidation of genome-wide understudied proteins targeted by PROTAC-induced degradation using interpretable machine learning. PLoS Comput. Biol. 19, e1010974 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Li, F. et al. DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs. Nat. Commun. 13, 7133 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaidman, D., Prilusky, J. & London, N. PRosettaC: Rosetta based modeling of PROTAC mediated ternary complexes. J. Chem. Inf. Model. 60, 4894–4903 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Bai, N. et al. Rationalizing PROTAC-mediated ternary complex formation using Rosetta. J. Chem. Inf. Model. 61, 1368–1382 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Chen, Q. et al. Optimization of PROTAC ternary complex using DNA encoded library approach. ACS Chem. Biol. 18, 25–33 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Mason, J. W. et al. DNA-encoded library-enabled discovery of proximity-inducing small molecules. Nat. Chem. Biol. 20, 170–179 (2024).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Tian, Y. et al. High-throughput miniaturized synthesis of PROTAC-like molecules. Small 20, e2307215 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Krajcovicova, S. et al. Solid-phase synthesis for thalidomide-based proteolysis-targeting chimeras (PROTAC). Chem. Commun. 55, 929–932 (2019).

    Article 
    CAS 

    Google Scholar 

  • Xu, H. et al. Development of rapid and facile solid-phase synthesis of PROTACs via a variety of binding styles. ChemistryOpen 11, e202200131 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hendrick, C. E. et al. Direct-to-biology accelerates PROTAC synthesis and the evaluation of linker effects on permeability and degradation. ACS Med. Chem. Lett. 13, 1182–1190 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Lebraud, H., Wright, D. J., Johnson, C. N. & Heightman, T. D. Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Cent. Sci. 2, 927–934 (2016).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Beck, A., Goetsch, L., Dumontet, C. & Corvaia, N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat. Rev. Drug Discov. 16, 315–337 (2017).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Cheng, W. et al. Development of hypoxia-activated PROTAC exerting a more potent effect in tumor hypoxia than in normoxia. Chem. Commun. 57, 12852–12855 (2021).

    Article 
    CAS 

    Google Scholar 

  • Liu, J. et al. Light-induced control of protein destruction by opto-PROTAC. Sci. Adv. 6, eaay5154 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Naro, Y., Darrah, K. & Deiters, A. Optical control of small molecule-induced protein degradation. J. Am. Chem. Soc. 142, 2193–2197 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Reynders, M. et al. PHOTACs enable optical control of protein degradation. Sci. Adv. 6, eaay5064 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Yang, C. et al. Radiotherapy-triggered proteolysis targeting chimera prodrug activation in tumors. J. Am. Chem. Soc. 145, 385–391 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • He, Q. et al. Near-infrared-activatable PROTAC nanocages for controllable target protein degradation and on-demand antitumor therapy. J. Med. Chem. 66, 10458–10472 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, W. et al. Self-assembled nano-PROTAC enables near-infrared photodynamic proteolysis for cancer therapy. J. Am. Chem. Soc. 145, 16642–16649 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Harris, A. L. Hypoxia–a key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38–47 (2002).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Szatrowski, T. P. & Nathan, C. F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51, 794–798 (1991).

    PubMed 
    CAS 

    Google Scholar 

  • Shi, S. et al. Rational design for nitroreductase (NTR)-responsive proteolysis targeting chimeras (PROTACs) selectively targeting tumor tissues. J. Med. Chem. 65, 5057–5071 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Liu, H. et al. Reactive oxygen species-responsive Pre-PROTAC for tumor-specific protein degradation. Chem. Commun. 58, 10072–10075 (2022).

    Article 
    CAS 

    Google Scholar 

  • Parkinson, E. I. & Hergenrother, P. J. Deoxynyboquinones as NQO1-activated cancer therapeutics. Acc. Chem. Res. 48, 2715–2723 (2015).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Liang, C. et al. Enzyme-catalyzed activation of Pro-PROTAC for cell-selective protein D egradation. CCS Chem 4, 3809–3819 (2022).

    Article 
    CAS 

    Google Scholar 

  • Gao, J. et al. Engineered bioorthogonal POLY-PROTAC nanoparticles for tumour-specific protein degradation and precise cancer therapy. Nat. Commun. 13, 4318 (2022).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Wang, Y. et al. Targeted degradation of anaplastic lymphoma kinase by gold nanoparticle-based multi-headed proteolysis targeting chimeras. Colloids Surf. B. Biointerfaces 188, 110795 (2020).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Song, C. et al. Selective protein of interest degradation through the split-and-mix liposome proteolysis targeting chimera approach. J. Am. Chem. Soc. 145, 21860–21870 (2023).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, C. et al. Smart nano-PROTACs reprogram tumor microenvironment for activatable photo-metabolic cancer immunotherapy. Angew. Chem. Int. Ed. Engl. 61, e202114957 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhang, C. et al. Checkpoint Nano-PROTACs for activatable cancer photo-immunotherapy. Adv. Mater. 35, e2208553 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Benowitz, A. B., Scott-Stevens, P. T. & Harling, J. D. Challenges and opportunities for in vivo PROTAC delivery. Future Med. Chem. 14, 119–121 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Mayor-Ruiz, C. et al. Plasticity of the cullin-RING ligase repertoire shapes sensitivity to ligand-induced protein degradation. Mol. Cell. 75, 849–858.e848 (2019).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Zhu, Y. X. et al. Cereblon expression is required for the antimyeloma activity of lenalidomide and pomalidomide. Blood 118, 4771–4779 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Ottis, P. et al. Cellular resistance mechanisms to targeted protein degradation converge toward impairment of the engaged ubiquitin transfer pathway. ACS Chem. Biol. 14, 2215–2223 (2019).

    PubMed 
    CAS 

    Google Scholar 

  • Ota, K. & Uzuka, Y. Clinical trials of bestatin for leukemia and solid tumors. Biotherapy 4, 205–214 (1992).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Bodduluru, L. N. et al. Chemopreventive and therapeutic effects of nimbolide in cancer: the underlying mechanisms. Toxicol. Vitr. 28, 1026–1035 (2014).

    Article 
    CAS 

    Google Scholar 

  • Liu, Y. et al. Expanding PROTACtable genome universe of E3 ligases. Nat. Commun. 14, 6509 (2023).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Singh, A. Inducing protein degradation using light. Nat. Methods 16, 1206 (2019).

    PubMed 

    Google Scholar 

  • Ross, A. B., Langer, J. D. & Jovanovic, M. Proteome Turnover in the Spotlight: Approaches, Applications, and Perspectives. Mol. Cell. Proteom. 20, 100016 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bartlett, D. W. & Gilbert, A. M. Translational PK-PD for targeted protein degradation. Chem. Soc. Rev. 51, 3477–3486 (2022).

    Article 
    PubMed 
    CAS 

    Google Scholar 

  • Wang, W. et al. A novel small-molecule PROTAC selectively promotes tau clearance to im prove cognitive functions in Alzheimer-like models. Theranostics 11, 5279–5295 (2021).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Kargbo, R. B. PROTAC degradation of IRAK4 for the treatment of neurodegenerative and cardiovascular diseases. ACS Med. Chem. Lett. 10, 1251–1252 (2019).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Catalanotti, F. et al. PTEN loss-of-function alterations are associated with intrinsic resistance to BRAF inhibitors in metastatic melanoma. JCO Precis Oncol. 1, PO.16.00054 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Paraiso, K. H. et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res. 71, 2750–2760 (2011).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Prozzillo, Y. et al. Targeted protein degradation tools: overview and future perspectives. Biology 9, 421 (2020).

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • Hurvitz, S. A. et al. ARV-471, a PROTAc® estrogen receptor (ER) degrader in advanced ER-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer: phase 2 expansion (VERITAC) of a phase 1/2 study. Abstr. GS3-03. Presented at San Antonio Breast Cancer Symposium (SABCS) (2022).

  • You may also like...